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Executive Summary 
On October 26th and 27th, 2010, Sandia National Laboratories (SNL) organized an interdisciplinary 
workshop in which participants from a range of institutions and research backgrounds presented 
and discussed papers on a range of topics related to the development and use of computational 
social science (CSS) in national security decision-making.   Computational social science refers to 
the use of computational modeling and simulation approaches, including agent-based, social 
network, discrete event, and systems dynamics methodologies, to study behavioral, cultural, and 
social dynamics.  CSS has long roots in computer science, artificial intelligence, and quantitative 
social science.  Over the past decade, CSS methods have captured the attention of the national 
security community as a source of analytic and decision-support technologies for a range of 
challenges, from counterinsurgency to terrorism.   
 
The workshop described in this report was part of a larger effort to identify and assess the major 
challenges for computational social science technologies to be effectively and responsibly 
incorporated into high-consequence, national security studies. Jennifer Perry of the Defense Threat 
Reduction Agency’s Advanced Systems and Concepts Office (DTRA ASCO) sponsored Laura 
McNamara and Timothy Trucano of the Computing Research Center at Sandia National 
Laboratories (SNL) to conduct a multi-phase study to evaluate if and how computational modeling 
and simulation projects and technologies can add value to high-consequence, national security 
decision-making.    
 
The first phase of this project was a comparative, interdisciplinary review of literature related to 
applied computational modeling and simulation in both the social and physical sciences.  In this 
review, we identified three classes of challenges for computational social science in national security.  
We summarized these complex and interrelated challenges in three general categories: prediction; 
verification and validation (V&V), and usability and utility.  These challenges are described in a summary 
paper that McNamara and Trucano authored (Appendix A).  
 
The workshop described in this report was the second phase of this project.   We assembled an 
interdisciplinary panel of experts to review our arguments in light of their own research and work 
experiences, and then respond, challenge, and/or elaborate upon the observations and arguments we 
made in the McNamara-Trucano paper.   We held the workshop at the La Fonda Hotel in Santa Fe, 
NM (see Appendix B). It was moderated by McNamara and Trucano, with assistance Charles 
Gieseler, also of Sandia. Sixteen people participated in the workshop, including McNamara, 
Trucano, Giseler, and Perry. Ten of the participants provided draft papers to the conference; nine of 
the revised papers are included in Appendix C of this report.    
 
Our participants included social, computational, and physical scientists from a range of government, 
industry, and academic institutions.  Most, but not all, had also participated in projects to develop 
and deploy computational models and simulations of social phenomena for decision-making; and 
over half the participants had worked on computational modeling and simulation projects in in 
national security contexts. To help the participants frame their papers, McNamara and Trucano sent 
each a copy of the summary paper. We also asked each participant to address themes related to the 
challenges that we identified, including: 
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 Prediction: What does “prediction” mean in the social, cultural, and behavioral domains?  
How can we know if a model is “predictive?”   Do models always entail some form of 
“prediction?” 

 Verification and Validation:  To what extent can V&V processes and principles from 
other fields, such as nuclear weapons certification and operations research, be applied to 
computational social science?  Where do they break down? 

 Modeling and Simulation in Social vs. Physical Science:  How do computational social 
models and simulations differ from those in the physical sciences; and what are the 
implications of this difference for developing and applying models and simulations for 
decision-making? 

 Social, Cultural, Behavioral Data in Modeling: What kinds of social science data are 
most suitable for developing and evaluating computational social models and simulations? 
How can social knowledge and/or information about social phenomena be translated into 
computationally tractable format; and what kinds of data are excluded from modeling and 
simulation projects? 

 Modeling, Simulation, and Decision-making: What kinds of information do 
computational models and simulations generate? How should that information be 
communicated to consumers, and how can we responsibly and usefully balance CSS models 
with other forms of information? Where should models and simulations be positioned in 
relation to national security decision-making and, potentially, policy discussions? 

 Human Users:  What design processes and principles can ensure that modeling and 
simulation technologies support human information processing, and how do we evaluate the 
efficacy of these technologies in human cognitive processing?   

 The Ethics of Modeling and Simulation: Given that most computational modeling and 
simulation efforts are multi-year, multidisciplinary projects that may or may not involve 
members of the user community, who is responsible for the impacts of these technologies 
on decision-making processes and outcomes?  

 
Participants developed position papers in response to one or more of these themes, and we 
presented and discussed these papers at the workshop.  
 

Key Workshop Themes and Findings 
The workshop discussions were intense and wide-ranging, making them difficult to summarize.  
However, the workshop discussions revolved around the following themes: 
 
The intersection of social science and computational modeling and simulation is producing novel and exciting 
interdisciplinary work.  Computational modeling and simulation methods offer social scientists a 
portfolio of novel approaches to studying social phenomena.  In addition, the challenge of modeling 
human society, culture and behavior is also drawing practitioners from other fields, including 
physics, engineering, and computer science, into the social sciences.  This is an interdisciplinary 
confluence with tremendous implications for research practice in the social sciences, and for our 
ability to make sense of complex human phenomena.  
 
Computational social modeling and simulation plays a different role in research environments than it does in decision-
making applications.  Researchers use computational modeling and simulation technologies to 
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aggregate data, examine patterns, and develop and experiment with novel explanations.  Modeling 
and simulation can play an important role in the development of social, cultural, and behavioral 
theory.  While these insights can be useful for government policy and decision-maker in some 
circumstances, these government communities are typically less concerned with theory development 
than with situational awareness, strategic and tactical planning, and interventions to effect desired 
outcomes.  Moreover, models developed for application are often intended as “tools” to support 
analysis and decision-making in user communities that are organizationally separate from the 
developer community.  In addition, government policy and decision-making have direct 
consequences for public stakeholders.  These and other factors distinguish the “research” use case 
from the “application” use case in ways that have implications for the construction and deployment 
of modeling and simulation technologies.  
 
Computational social science projects can be difficult for even subject matter experts to understand and assess. 
Computational social science is a new interdisciplinary field, and its applications are seemingly 
endless and open-ended. This makes it difficult for external observers and stakeholders to critically 
assess both the potential benefits and pitfalls of proposed projects and their envisioned applications.    
 
Computational social science in national security lacks adequate input from the social sciences.   Computational 
social modeling and simulation projects funded by government agencies are often treated as 
modeling projects first, as social science second.  This creates tremendous risks when modelers do 
not understand the epistemic (lack-of-knowledge) uncertainty associated with selecting and applying 
social/behavioral theory, collecting, analyzing and interpreting data, and/or mitigating sources of 
error associated with social science problems and methods.   This creates risks for decision-makers 
who incorporate modeling and simulation outputs in their assessments and plans.   
 
Not all problems require modeling and simulation.  Modeling and simulation is hugely popular in the 
national security community for a variety of social and historical reasons.  When every problem is 
treated as a modeling problem, decision makers have less access to knowledge, methods and 
approaches that might provide better insights into areas of concern.   
 
Social science problems are fundamentally different than physical problems.  Social science problems concern 
human actors. Humans perceive, interpret, and act on the world.  Human perception, interpretation, 
and action are necessarily contextual, historical, and specific. This limits the degree to which 
“general” principles of human and social behavior can be invoked to predict historically, 
geographically, and socially distinct processes and events in the absence of data.  
 
However, useful and provocative analogies can be drawn to computational science in the physical and natural domains. 
While the target domains of computational social modeling and simulation pose tremendous 
epistemological and practical challenges for scientists, many of the principles involved in developing, 
evaluating and deploying quality computational modeling and simulation technologies are discipline-
agnostic.  Software engineering practices, for example, are critical to ensure that bad code does not 
produce erroneous outputs.   Another example is lack-of-knowledge uncertainty, which is present in 
all science.  Even physical scientists dealing with “first principles” face uncertainty in model 
selection and implementation.  The robust physics and engineering discourse on analyzing and 
managing uncertainty may provide important insights for computational social modeling and 
simulation in national security decision-making.    Comparing and contrasting computational social 
modeling and simulation to modeling and simulation in other domains provokes important insights 
into the nature of modeling and simulation.  
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Prediction and its many synonyms (e.g., forecasting, anticipation) are neither understood nor well defined in the social, 
cultural, or behavioral domains. Even practitioners in this domain do not agree on what prediction 
means, though many want to claim that modeling enables prediction.  The fact that “predictions” 
are rarely well-specified makes it difficult for consumers of modeling outputs to understand what a 
model is “predicting” (or forecasting, or anticipating) and to hold models and their creators 
accountable for claims to foresight.    In addition, differentiating between predictive and non-
predictive uses of modeling is a difficult challenge, and one that generated a great deal of discussion 
among the workshop members.  
 
Computational social models and simulations are artifacts, but they are also processes.  Models and associated 
simulations are computational reifications of limited human knowledge about the world. Creating a 
model has benefits beyond the computational artifact; the process forces people to specify 
assumptions, identify disagreements, formalize tacit knowledge, and identify gaps in knowledge and 
data.  The process of modeling may be more valuable than the model itself.   
 
Who are the “users” of models and their outputs?  Computational social modeling and simulation 
technologies often encode domain-specific forms of expertise, as well as assumptions about the 
entities and processes being modeled.  Whether individuals without expertise in modeling, 
simulation, and/or social science are able to use these technologies to meaningfully and responsibly 
analyze complicated social processes for high-consequence decision making environments is 
questionable.  User-oriented design, interaction design, user experience, participatory modeling, and 
training may help address this problem, though identifying “users” in complex government 
bureaucracies is often a difficult challenge.    Ironically, social science research methods, such as 
ethnography, may be tremendously helpful in designing these technologies for human users.  
 
Model validation in the social sciences is important and difficult.  A number of factors contribute to this 
difficulty, from the epistemological challenges of the social sciences, to the practicalities of 
identifying and gathering validation quality datasets, to the time and resource requirements for 
conducting validation studies when models are oriented toward rapidly-changing decision spaces.    
 

RECOMMENDATIONS 
The workshop convened in Santa Fe explored a broad range of issues related to computational 
social modeling and simulation, from the impact of new computational techniques on social science 
research to the practicalities of tool adoption among intelligence and military analysts. In the wake of 
the workshop, McNamara and Trucano reviewed the insights, commentaries, and tremendously 
good work of the participants who brought their ideas and papers to Santa Fe, and distilled the 
following recommendations.  
 
RECOMMENDATION ONE:  Design, implement, and assess computational 
social science projects as hybrid, interdisciplinary research and development 
efforts.  
 
We assert that computational social modeling and simulation projects should be analyzed and 
studied as the interdisciplinary processes and technologies that they are. Three domains in particular 
are germane to any assessment of computational social science models and simulations:  social science, 
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computational science, and decision support and analysis software. When computational social science 
technologies are applied in decision-making, these domains intersect, as depicted in the diagram 
below: 
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Figure 1: Applied CSS as Interdisciplinary Domain 
 
 
 
Only an interdisciplinary framework that addresses the multiple domains of research and practice 
that pertain to these technologies has any hope of ensuring complete assessments of their quality 
and correctness. The next four recommendations derive from this intersection, and pertain to the 
design, development, and evaluation of computational social science projects in decision-making 
environments.  
 
 
RECOMMENDATION TWO: Evaluate computational social modeling and 
simulation projects as a form of social science.  
 
Computational social science is a first and foremost a form of social science. Modeling and 
simulation is a field of methodological research for studying social, cultural, and behavioral 
phenomena. Its application is only as “scientific” as the research design in which it is embedded.   
 
Decision- and policy-makers who are attempting to make sense of a particular computational social 
modeling and simulation effort should ask questions about scientific validity of the theoretical and 
conceptual framework that underpins the model.  They should ask how the modelers identified and 
assessed existing research on the domain, how they connect their work to pertinent questions in the 
social sciences, and to explain how they identified questions that the model is seeking to answer.  
Modelers should also be able to specify and justify the role of modeling in their research design. 
They should speak credibly to the challenging problems of data: how they obtained data, if these 
datasets are primary or secondary data, who collected the data, how, and why; to justify why data are 
relevant to the problem, and to discuss pertinent assumptions, limitations, and sources of error in 



 

the data. They should be able to explain why particular modeling and simulation approaches are 
necessary for examining this domain, and to articulate the basis for claims to the credibility of their 
simulation outputs.    
 
RECOMMENDATION THREE:  Evaluate computational social models and 
simulations as a form of computational science.  
 
As important as it is to couch computational social modeling and simulation projects in the social 
sciences, it does not go far enough. Social science does not ask questions about algorithms or 
underlying mathematical issues, nor does it point to issues of software implementation, testing, and 
performance. However, the field of computational science does, and framing computational social 
science as a form of computational science raises a second set of issues for evaluating these projects. 
Decision makers should ask about software engineering practices, documentation, and testing, as 
well as how the modeling team is evaluating the correctness and performance of the software it has 
written; how sources of error in the code are detected and mitigated.  At a deeper level, the 
experience of other fields may provide valuable input to the challenges and issues that arise when 
computational modeling and simulation outputs are being used as a source of predictive information 
in decision-making, when knowledge is lacking.    
 
 
RECOMMENDATION FOUR: Evaluate computational social models and 
simulations as decision support tools for individual and organizational use 
communities.   
 
Tools afford efficacious human action: they are usable and useful.  They fit well into contexts of use: 
they are adoptable.  Technologies that meet these criteria are likely to be used.    Definitions of 
usability, utility and adoptability that come from the “seller” of the model are not acceptable. Setting 
standards for usability, utility, and adoptability is a task that belongs squarely in the domain of the 
client or consumer.   We assert that design processes for these technologies should involve some 
attention to the intended areas of application (this is necessary for validation and utility) and the intended 
user communities, if only to ensure that the resulting technologies are both usable and useful. 
Participatory approaches that involve users in the development process are more likely to produce 
educated consumers/users of both the tool and the information it generates. In addition, human-
computer interaction, human factors, and cognitive psychology can be leveraged to develop studies 
that assess the impact of modeling and simulation technologies on how people assess and draw 
conclusions from complicated and ambiguous datasets.  
 
 
RECOMMENDATION FIVE:  Support interdisciplinary exchanges that 
enable computational social science researchers, developers, adopters, 
proponents, users, and stakeholders to learn how other fields analyze and 
evaluate models and simulations.   
 
While we recognize that there are significant differences between the physical and the social 
sciences, we continue to assert that other fields’ experiences with developing, deploying, interpreting 
and applying modeling and simulation technologies can help organizations understand how to 
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develop models, interpret their outputs, combine simulation outputs with other forms of 
information, and assess the limitations of modeling and simulation technologies in decision-making.  
Models are not just tools for analysis; they are artifacts that require analysis if we are to understand 
how they function, how we can use them responsibly, and what their limitations are.   
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1. Introduction 
In October 2010, Sandia National Laboratories (SNL) organized an interdisciplinary technical 
workshop in which participants from a range of disciplines, institutions, and research backgrounds 
discussed computational social science for national security decision-making.  The workshop was 
sponsored by the Defense Threat Reduction Agency’s Advanced Systems and Concepts Office 
(DTRA ASCO) through Jennifer Perry, and was organized and moderated by Laura McNamara and 
Timothy Trucano of the Computing Research Center at Sandia National Laboratories.  In addition, 
Charles Gieseler of the Sandia National Laboratories’ Cognitive Modeling Department participated 
in the discussions and assisted with workshop logistics and recording exchanges among participants.  
This workshop was part of a larger project entitled “Grand Challenges in Modeling and Simulation 
for Decision Support” that McNamara and Trucano had been pursuing in conjunction with Perry 
since October 2009.    
 
This report presents the workshop’s findings. In the following pages, we provide some context for 
the workshop, describe our approach to organizing and executing the event, and the major themes 
and conclusions that emerged from our contributors’ papers and discussions.   Our participants’ 
papers and biographical statements are included as appendices to this report.    

1.1. Context: Computational Social Science and Decision-Making  
Since the early 1990s, computational social science (CSS) has emerged as a major field of 
interdisciplinary research, with practitioners from the social, computational, mathematical, and 
physical sciences exploring a range of approaches to studying social phenomena through modeling 
and simulation.1 CSS refers to the use of computational modeling and simulation approaches, 
including agent-based, social network, discrete event, and systems dynamics methodologies, to study 
behavioral, cultural, and social dynamics.  CSS has long roots in computer science, artificial 
intelligence, and quantitative social science.   
 
In the wake of the 9/11 attacks, and the subsequent invasions of Iraq and Afghanistan, a number of 
institutions in the United States’ national security community, and particularly the U.S. Department 
of Defense (DoD), have invested in CSS research. Such investments are part of a larger trend in the 
national security community to seek relevant information and knowledge from the social sciences to 
develop novel strategies for understanding and addressing complex national security challenges, 
particularly radicalization, terrorism, and insurgency.  Among many policy and decision-makers,2 

                                                 
1 By “modeling,” we mean the development of an abstraction that captures elements and interrelationships in a posited 
system.  By “simulation,” we mean an active instantiation of a model that temporally and logically evolves the 
constituent elements, resulting in a set of outputs for analysis (see P. Bratley, B. L. Fox, and L. Schrage, A Guide to 
Simulation. New York: Springer, 1987, page 1).    Most scientific disciplines, including the social sciences, rely on both 
modeling and simulation to develop hypotheses, formalize emerging understandings, identify and address gaps in 
knowledge, and to specify and refine theories.  Neither modeling nor simulation requires a computer: models can be as 
simple as a mathematical equation, while experiments are a form of simulation.  
 
2 We differentiate between policy and decision-makers at the request of our DTRA sponsor.  In this paper, policy-
makers denote those elected and appointed officials who set broader agendas and/or goals for federal government 
departments and agencies.  Decision-makers are generally the employees within those departments and agencies who are 
charged with implementing policy.  Many of the computational modeling and simulation projects and technologies that 
we are describing in this paper are oriented toward decision-makers – for example, analysts and military personnel – in 
the Department of Defense and the Intelligence Community.  However, there is no reason in principle that 
computational social models and simulations might not be used in policy analysis and development.  
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computational social models and simulations are perceived as having a wide range of potential 
applications, from training military personnel to tactical and operational support for in-field 
decision-making. 
 
At the same time, CSS is a relatively new field of interdisciplinary research and development.  In 
particular, it represents the intersection of multiple deep areas of research, driven primarily by the 
increasing power and availability of computational technologies as well as new sources of data 
(internet and wireless communications data, for example).  Computational modeling and simulation 
methodologies are fields of study in their own right, as are the heterogeneous disciplines of the 
social sciences.  Moreover, CSS projects draw on knowledge and methods from other fields of 
study, including graph theory, information visualization, and statistical physics. Because of the field’s 
heterogeneity and newness, people without experience in computational modeling and simulation – 
even those with expertise in the target phenomena being modeled (e.g., geographic and cultural 
regions, religious movements) – can find it extremely difficult to assess the quality of a particular 
computational modeling and simulation effort.  In short, the field is new, its disciplines diverse, and 
its applications seemingly endless and open-ended, making it difficult for external observers and 
stakeholders to critically assess both the potential benefits and pitfalls of proposed projects and their 
envisioned applications.  
 

1.2. Workshop Background 
This problem – the absence of a framework for assessing the state of computational social modeling 
and simulation as an applied science, and for identifying and posing evaluative questions about 
computational modeling and simulation projects for government agencies – was precisely the 
challenge that the DTRA/Sandia project sought to address.   In the Fall of 2009, we began a 
research project U.S. to address the following questions:  
 

 What are the technical challenges that need to be addressed before computational social 
models are ready for “prime time” application in national security decision-making 
environments?    

 How might these challenges be addressed? To what extent can we apply “lessons learned” 
from other scientific communities?  How do social science theory and methods address 
these challenges? What are the ramifications of not addressing them?  

 How can we promote a mutual understanding of these challenges and the issues surrounding 
the practical application of models in national security decision-making among all relevant 
communities?   

 
From the Fall of 2009 until the Summer of 2010, McNamara and Trucano reviewed literature related 
to modeling and simulation, social science, and decision-making.  Because the intersection of 
computational social science and national security is so interdisciplinary, we purposely cast a broad 
net when gathering our literature.  Our review included selections in CSS, both within and outside 
the realm of national security decision-making.  However, we also examined literature from fields in 
which computational modeling and simulation is a more established methodology, both for research 
purposes and organizational decision-making.  For example, we examined literature on weather and 
economic forecasting, as well as operations research and nuclear weapons certification.    
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In this review, we discovered a great deal of methodological guidance on how to design, develop, 
evaluate, and deploy computational modeling and simulation technologies as decision-support tools.  
We also realized, somewhat surprisingly, that the existing CSS literature rarely calls on the practical 
experience of other fields, such as weather forecasting and nuclear weapons certification, whose 
practitioners have developed rich understandings about the incorporation, evaluation, benefits and 
limitations of modeling and simulation technologies in forecasting and decision-making activities.  
 
We concluded that computational social modeling and simulation demands significant 
methodological development if its technologies are to be used as tools to support high-consequence 
decision-making.  Inherent in this statement are three arguments: first, computational modeling and 
simulation technologies always entail limited approximations to the real world. However, as 
computational models and simulations become more sophisticated, limitations can be difficult to 
identify and evaluate. Second, the demands and requirements of decision-making environments, 
such as those found in the U.S. Department of Defense, are different from the research 
environments where CSS is primarily rooted.  Decision makers in the national security community 
have problems to understand, plans to make, and resources to allocate; and in all of these, they may 
literally be dealing with life-and-death challenges. Finally, no model or simulation is inherently a 
“decision support tool;” instead, tool development is a distinct field of research and development 
that explicitly takes account of human users and organizational contexts of deployment.  
 
From these assertions, we identified a set of challenges for computational social science as it moves 
from research into application in national security environments.  We began with a normative 
assertion: all modeling and simulation projects should be approached with skepticism. However, we 
emphasized that skepticism must be productive rather than cynical or dismissive, and spoke of a 
pragmatic, applied, constructive skepticism that would support understandings about what modeling 
and simulation technologies are good for; their appropriate role in helping people solve problems 
and make sense of complex situations; and the appropriate use of computational models and 
simulations in framing decision spaces and as inputs to setting courses of action.    
 
We argued that productive skepticism entails three separate classes of challenges for computational 
social modeling and simulation. Firstly, productive skepticism does not assume that models and 
simulations produce analyses, provide forecasts, or make decisions.  In particular, we pointed out 
that the promise of prediction is a dominant theme in the discourse about the benefits of computation 
social models and simulations.  However, we drew on the work of a number of science policy 
experts to make the argument that scientific prediction and policy prediction are substantially 
different enterprises; and moreover, the temporal, geographical, and social dimensions of 
sociobehavioral prediction for policy making are rarely well specified.  When applied to 
“prediction,” productive skepticism requires careful specification of a prediction’s content, 
boundaries, and limitations.  
 
Secondly, productive skepticism emphasizes the importance of rigorous evaluation, along the lines 
of what has been done in verification and validation (V&V) in fields such as computational physics and 
operations research.  In these fields, V&V encompasses a set of methods to evaluate how well a 
model/simulation meets the demands of an intended application, not to determine whether or not a simulation 
is “correct.” V&V methodologies enable stakeholders to assess how well a particular model captures 
the critical aspects of the domain being modeled (validation); and how well the software is actually 
executing that model (verification). Verification and validation are complex challenges for any field, 
insofar as V&V is a rigorous evaluation process that comprises problems of conceptual/theoretical 
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validity, data quality, and the identification of referents or comparison points to “tie” models and 
simulations to the real world.    However, V&V is particularly challenging for the social sciences, 
because of the heterogeneity of theoretical frameworks and the interpretive, representative nature of 
social science data.  Moreover, V&V is also organizationally and financially challenging, because 
V&V activities can require significant investments in time, money, and personnel – not easy to come 
by in rapidly shifting, demanding decision-making environments such as those found in the U.S. 
Department of Defense.  
 
Thirdly, to say that a model supports decisions or is “predictive” elides the presence of the human 
being(s) who are developing, running, and interpreting modeling and simulation outputs and 
ultimately making predictions. Accordingly, we argued that productive skepticism does not take 
human users for granted, but is focused on issues of design and evaluation to understand how 
modeling and simulations methodologies can support human information processing and 
organizational decision-making structures. Ensuring usability and utility requires attention to issues of 
human factors, ergonomics, and distributed human cognitive systems, such as those found in high-
consequence decision-making environments.  Whether or not a “tool” supports humans in these 
environments is a complicated design and evaluation problem above and beyond the internal and 
external correctness of a computational modeling and simulation technology.   
 
Lastly, in addition to these three primary challenges, we noted that the application of CSS 
technologies in high-consequence decision-making raises ethical challenges as well.  Just as 
computational social science represents the intersection of a number of theoretical and 
methodological research areas, the ethical challenges of computational social science are likely 
interdisciplinary as well. We believe that the ethical frameworks developed in computer science may 
provide some guidance for applied CSS, but that ethical principles in the social sciences are likely 
germane to the development of the field as well. Researchers in a number of social science fields, 
including anthropology and psychology, have concluded that certain forms of applied social science 
for national security problems are ethically problematic. However, these discipline’s analyses 
typically do not address the specifics of computational social models and simulations as a form of 
applied social science.   
 
In the end, we gathered over 900 books and articles and drafted a 70-page draft review, addressing 
this diverse set of themes.  This review was submitted to DTRA ASCO in July of 2010 (an abridged 
version of this longer paper is attached as Appendix A of this report).  As extensive as this review 
was, we recognized that it was neither sufficient nor complete. As reviewers, we saw significant 
connections among these different bodies of literature, but we realized that our comparisons were 
likely incomplete, perhaps controversial, and that we had probably missed important themes.   We 
also wanted to collect input from experts in other fields about the challenges that accompany 
computational social science as it moves from research into an application domain; and hoped that 
we could leverage this input to develop a framework for understanding and critically assessing 
computational modeling and simulation projects.     
 

1.3. Workshop Goals 
The Santa Fe workshop provided an opportunity for us to discuss our primary challenges – prediction, 
verification and validation, and usability and utility, along with the ethical considerations of modeling and 
simulation in decision-making – with representatives of the different research areas that we had 
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identified in our literature review.  The primary goal of the workshop was to have an 
interdisciplinary panel of experts review our arguments in light of their own research and work 
experiences, and then respond, challenge, and/or elaborate upon the observations and arguments we 
made in our paper.  Because our literature review was so interdisciplinary, we selected experts from a 
range of fields who collectively could speak to intersections that we identified in our review.   
During the workshop, the participants examined and discussed the state-of-the-art in computational 
social modeling and simulation in both research and decision-making contexts.  They spoke to the 
challenges we identified in our paper, sometimes critically; and identified other issues that face CSS 
projects being transitioned into real-world decision-making in national security.  Most importantly, 
we discussed what advice we might give to decision-makers in the national security community 
about how to evaluate computational social modeling and simulation projects, so that stakeholders 
in these projects are empowered to make informed decisions about how to fund, pursue, evaluate, 
and apply CSS-based tools in their domains of responsibility. 
 

2. Workshop Planning, Participants, and Process 
The workshop was organized around individual papers contributed by invited participants, focusing 
on specific themes and topics related to computational social science in national security decision-
making.  In the Spring of 2010, McNamara and Trucano identified a set of focal topics to be 
explored by the participants.  These focal topics included the current state of CSS and its 
applications in national security contexts, with an emphasis on prediction, verification and validation, and 
usability and utility when deploying CSS technologies as decision support “tools” in national security 
organizations.   
 
Once we had identified these focal topics, we developed set of cross-cutting sub-topics for 
elaboration in specific papers.  These cross-cutting themes are listed below.  None are mutually 
exclusive, and each speaks to all three of the topics that we identified above.  
 

 Prediction: What does “prediction” mean in the social, cultural, and behavioral domains?  
How can we know if a model is “predictive?”   Do models always entail some form of 
“prediction?” 

 Verification and Validation:  To what extent can V&V processes and principles from 
other fields, such as nuclear weapons certification and operations research, be applied to 
CSS?  Where do they break down? 

 Modeling and Simulation in Social vs. Physical Science:  How do computational social 
models and simulations differ from those in the physical sciences; and what are the 
implications of this difference for developing and applying models and simulations for 
decision-making? 

 Social, Cultural, Behavioral Data in Modeling: What kinds of social science data are 
most suitable for developing and evaluating computational social models and simulations? 
How can social knowledge and/or information about social phenomena be translated into 
computationally tractable format; and what kinds of data are excluded from modeling and 
simulation projects? 

 Modeling, Simulation, and Decision-making: What kinds of information are generated 
by computational models and simulations? How should that information be communicated 
to consumers, and how can we responsibly and usefully balance computational modeling and 
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simulation findings with other forms of information? Where should models and simulations 
be positioned in relation to national security decision-making and, potentially, policy 
discussions? 

 Human Users:  What design processes and principles can ensure that modeling and 
simulation technologies support human information processing, and how do we evaluate the 
efficacy of these technologies in human cognitive processing?   

 The Ethics of Modeling and Simulation: Given that most computational modeling and 
simulation efforts are multi-year, multidisciplinary projects that may or may not involve 
members of the user community, who is responsible for the impacts of these technologies 
on decision-making processes and outcomes?  

 
We used this literature review to identify researchers that we believed could bring a unique 
perspective on these topics. In addition, Perry commented on the thematic areas, and suggested 
names of possible participants that she had either worked with or encountered as a project manager 
at DTRA ASCO.   Each individual was chosen to address one or more of the challenges we 
identified in our paper, drawing on their own experience to respond to and elaborate upon a set of 
themes.   In addition, we identified discussants with expertise in the intersection of science and 
national security policy to provide additional context to the workshop papers and exchanges.  
 
Our initial expert list included social scientists with experience in computational social modeling and 
simulation projects, policy and decision-making; computational scientists (including one physicist 
and a PhD engineer) with experience in developing, evaluating, and applying computational models 
and simulations to national security technologies, including nuclear weapons; representatives of the 
national security user community for whom CSS technologies are being developed; and researchers 
with expertise in designing, deploying, and evaluating software tools for human users in the national 
security community.   Most, but not all, had also participated in projects to develop and deploy 
computational models and simulations of social phenomena for decision-making, some inside the 
national security community and others in fields such as development and natural resources 
management.  In the end, we had sixteen participants: McNamara and Trucano as workshop chairs, 
Perry as observer, ten paper contributors, and three discussants.  
 
McNamara began contacting potential participants in June of 2010, explaining that we had selected 
them because of their ability to focus on a particular problem or theme (the themes that we asked 
them to consider are discussed in the next section of this report).   Roughly a month later, we sent 
each of them a copy of the McNamara and Trucano paper, and requested that they read the paper in 
light of the particular topic or theme that we had asked them to consider.  We gave our participants 
leeway in their writing assignments: they could respond to our commentary, elaborate on points that 
we had identified, and/or bring forward ideas that we had not addressed.     
 
The October 2010 workshop provided these experts an opportunity to review and discuss each 
others’ papers.  However, the workshop was also a forum in which these experts – many of whom 
were largely unfamiliar with each others’ research fields – could exchange ideas about the role, 
development, and application of computational methodologies for advancing knowledge; as well as 
the translation of research technologies into applied tools.   The biggest challenge of the workshop 
was ensuring that researchers from such diverse backgrounds would be able to speak to each other’s 
papers and ideas, in the context of CSS for national security decision-making.  To facilitate the 
participants’ familiarity with each other’s work, we asked paper contributors to submit an abstract 
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and a biographical statement several months in advance of the workshop.  We compiled these into a 
single document and sent it to the entire seminar participant list, so that people would have a sense 
of who was attending and what the tentative topics would be.  We also asked participants to submit 
their essays two weeks prior to the seminar, so that we could distribute them to the rest of the group 
for pre-reading material.  To further facilitate discussion, we also reviewed each of the papers and 
assigned each workshop participant the role of primary discussant for another seminar participant’s 
paper.   During the actual workshop, each participant briefly presented his or her own paper, then 
the assigned discussant reviewed the paper, identifying key themes and raising discussion points.  
The exchange then opened to the entire group.   The agenda is included in Appendix B of this 
report.  
 
This structured seminar format worked extremely well.  During the two days of discussions, the 
group engaged in lively and collegial discussions about each other’s papers, and the exchanges 
ventured into a range of topics related to computational modeling and simulation, social science, 
policy and decision-making, ethics, and national security challenges. We are grateful to the 
participants for their thoughtful papers, their sincere engagement with the topics at hand, and their 
enthusiasm for exchanging ideas and learning from each other.  
 

2.1. Workshop Participants and Papers3 
 
In this section, we introduce our workshop paper authors and discussants.  We identify the theme 
we asked the paper authors to consider and provide a brief summary of their papers, which can be 
found in full in Appendix C of this report.  We also provide brief biographical statements for these 
experts.  Full biographical statements for all of the workshop participants can be found in Appendix 
D of this report.   

2.1.1.   Paper Contributors and Topics 
Jeffrey C. Johnson was asked to discuss the topic of social science data collection, management, and use in 
computational social science projects for national security decision-making.  Johnson is a quantitative 
anthropologist and is Senior Scientist at the Institute for Coastal Science and Policy, and University 
Distinguished Research Professor in the Department of Sociology with adjunct appointments in 
Biology, Anthropology, and Biostatistics at East Carolina University. He is also the Social Science 
Program Manager for the U.S. Army Research Office where he is developing a basic scientific 
research program in the social sciences.  Johnson’s workshop paper is a warning against taking social 
science “data” for granted.  He acknowledges the importance of good theory selection in developing 
computational models of social dynamics, but emphasizes that the collection and analysis of social 
science data presents significant methodological challenges as well.  In particular, Johnson argues 
that greater focus on error in social network modeling and analysis is necessary if computational 
analysis is to be incorporated into real-world decision-making.  Johnson identifies roughly a dozen 
types of error that can threaten data and model validity in the context of social network analysis and 

                                                 
3 In addition to those experts listed below, we had also invited Simone Youngblood, currently at the Johns Hopkins 
Applied Physics Laboratory and formerly of the U.S. Defense Modeling and Simulation Office (DMSO) to discuss the 
history and importance of Verification and Validation, and to reflect on the fiscal, political, and organizational challenges 
of introducing rigorous V&V into modeling and simulation projects.   Youngblood initially accepted the invitation, but 
later withdrew from the workshop, citing family obligations and scheduling pressures.    
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assesses how different errors can lead to significantly different analytical conclusions. Johnson calls 
for a science of error so that stakeholders in network models can better understand the impact of 
error on model performance and real-world decisions.   
 
David L.  Sallach was asked to examine the topic of verification and validation to identify challenges that 
are specific to the domain of social science. Sallach is a sociologist who specializes in applying agent 
modeling and simulation technologies within social science domains, drawing on social theory to 
develop trans-scale social models.  He received his PhD from the University of Nebraska at Lincoln; 
has taught both sociology and computer science, and served as Director of Social Science Research 
Computing at the University of Chicago from 1998-2003, where, along in conjunction with 
Nicholson Collier, he designed the architecture of the Repast agent simulation toolkit.  Since 2003, 
he has been Associate Director of the Center for Complex Adaptive Agent Systems Simulation at 
the Argonne National Laboratory, and also a Senior Fellow at the Computation Institute at the 
University of Chicago and Argonne National Laboratory.   In his paper, Sallach critiqued the 
implication that verification and validation frameworks from other fields provide a sufficient guide 
for formal validation efforts in CSS projects.  Instead, he argues that social science problems present 
unique challenges for model validation above and beyond those in the physical sciences, such as 
context effects, endogenous and emergent behaviors in social systems, and the hidden nature of 
intent, all of which are present in social dynamics, and which are typically absent from V&V research 
in fields like physical science and operations research.   
 
Jessica  Glicken Turnley has experience developing CSS projects in interdisciplinary settings, and 
was asked to discuss the problem of evaluating the quality (what she refers to as “goodness”) of a 
modeling and simulation project.  She is President of Galisteo Consulting Group, Inc., a consulting firm 
in Albuquerque, NM. She is formerly a member of the Defense Intelligence Agency Advisory Board 
and currently holds an appointment as Senior Fellow, Joint Special Operations University, 
USSOCOM, where she provides research, analysis and concept development of selected special 
operations issues, computational modeling and simulation initiatives, and organizational and cultural 
topics pertinent to both U.S. national security organizations and adversaries.  Turnley’s paper draws 
on her experience observing and participating in national security-related modeling and simulation 
projects to examine how organizations use these in decision-making. The complexity of 
sociocultural phenomena, the contingency of data, the timescales of social phenomena, all mean that 
computational social models and simulations are unlikely to be “predictive” in the way that 
models/simulations of physical phenomena are assumed to be.  Turnley believes this has 
implications for what “verification” and “validation” entail in this domain, and argues that the V&V 
literature in the physical sciences emphasizes predictive V&V.   She suggests that evaluation 
methodologies used for CSS technologies should be expanded beyond traditional prediction-
oriented V&V to address a broader range of intended applications.  
 
Lucy Resnyansky was tasked to examine the ethical challenges of developing, deploying, and using 
computational social modeling and simulation technologies in high-consequence decision-making.  Resnyansky is 
Research Scientist with the Defence Science and Technology Organisation (DSTO) Australia.  She 
has a Bachelor (Honors) degree in Linguistics (1985) and a PhD in Social Philosophy (1994) from 
Novosibirsk State University (Russia); and a PhD in Education (2005) from the University of South 
Australia. Resnyansky conducts research in areas of social modeling, national security and 
intelligence analysis, interdisciplinary research; sociocultural implications of technology; Internet-
mediated social interaction; activity theory; and social semiotics.  In her paper, Resnyansky argues 
that the rapid rise of information and communications technologies has raised significant ethical 
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challenges for national security decision makers, revolving around freedom and surveillance. The 
extent to which the ethical challenges of communications and information technologies are present 
in the domain of computational modeling and simulation may depend on how information and 
communications data sources are incorporated into models.  However, she also points out that 
computational modeling and simulation technologies present additional ethical dilemmas related to 
the role of models in translating expert knowledge for non-expert users, and the quality and 
outcomes of organizational decision-making processes.  She argues that conscientious research, 
design, and development activities in modeling and simulation are critical to address the ethical 
challenges of applying simulation technologies in real-world decision spaces.  
 
Francois M. Hemez was asked to examine the limitations of using simulations as predictive tools under 
conditions of uncertainty.  Hemez has been Technical Staff Member at Los Alamos National Laboratory 
since 1997. He was a member of the Weapon Response group (ESA-WR) for seven years; served as 
ESA-WR Validation Methods team leader for one year; and is currently with XTD-Division. He has 
managed the verification project of the Advanced Scientific Computing program for two years and 
currently manages the Predictive Capability Assessment project, while contributing to the 
development and application of verification and validation (V&V), uncertainty quantification and 
decision-making for engineering, nuclear energy and weapon physics projects.   Hemez’ paper was 
unique among the contributions, because Hemez leveraged his work in physical modeling and 
simulation to address issues in the domain of social modeling and simulation.  Hemez points out 
that uncertainty in modeling and simulation can derive from the inherent randomness of a 
phenomenon; or it can stem from the assumptions we make in constructing a model – assumptions 
that may be necessary to render a phenomenon model-able, but that also hide our lack of knowledge 
and understanding.  This complicates “prediction,” leading Hemez to argue that modelers face 
tradeoffs among fidelity-to-data, robustness to lack of knowledge, and consistency of numerical 
predictions.  For Hemez, “predictability” is a broad question that addresses the consistency of 
predictions across classes of models that are demonstrably equivalent in their a) accuracy and b) 
robustness to lack-of-knowledge.  In making this argument, Hemez seeks to widen the discussion 
about model “correctness” to build a more rigorous mathematical and practical foundation for using 
models, while understanding their limitations for forecasting under conditions of uncertainty.   
 
Jean Scholtz has worked in the area of user-centered evaluation of technology for 20 years, and was 
tasked with examining the challenge of human factors design, deployment, and evaluation in computational 
modeling and simulation projects.  She is Chief Scientist at Pacific Northwest National Laboratory, 
working part time in user-centered evaluation of visual analytic systems, with expertise in law 
enforcement and intelligence analysis contexts.  Previously, she worked for the National Institute of 
Standards and Technology where she developed metrics and methodologies for user-centered 
evaluations of programs for the U.S. Defense Department and the Intelligence Community.  In her 
paper, Scholtz argues that user-centered approaches are lacking in the design and deployment of 
computational social modeling and simulation technologies.  Drawing on her extensive research in 
user-oriented metrics for usability and utility of intelligence analysis software, Scholtz emphasizes 
that the translation of prototype technologies into usable and useful tools must begin with studies of 
the user communities.  Effective end-user metrics not only assess the utility of the technology and 
its potential adoptability, but its impact on the modeling and simulation results, and perhaps the 
analysis products, that users create and pass to decision-makers.   
 
Mark Bevir is a Professor in the Department of Political Science at the University of California at 
Berkeley. His primary research interests are in political theory (including the history of political 
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thought, political philosophy, and the philosophy of the human sciences) and public policy 
(including interpretive analysis, organizational theory, and governance).  His research examines the 
intersection of social science, especially political theory, with real-world governance, a topic on 
which he has published over a dozen books and 150 articles.  For this workshop, Bevir’s paper 
addressed the interpretive and contextual nature of social science vis-à-vis the physical sciences, 
drawing a distinction between “naturalism” and “anti-naturalism” in the physical and social sciences.  
For Bevir, this distinction has significant implications for how we should approach individual 
modeling projects, as well as the broader program of computational social modeling.   Specifically, 
Bevir points out that theory in the social sciences tends to be more socio-historically contextual than theory in the 
physical sciences; and that the contextual, specific nature of both social phenomena and the explanations we develop for 
them make “prediction” an unwieldy goal for computational social modeling.   Bevir then discussed the 
implications for computational modeling and simulation, forecasting, and governance, emphasizing 
the importance of narrative in helping decision makers locate actors and their actions in broader 
historical, geographical, and political contexts.  
 
Robert Albro is a sociocultural anthropologist and Professor of International Communication at the 
School of International Service at American University.  He has been conducting research on 
popular and indigenous politics in Bolivia since 1991 and is currently studying how “culture” is 
being used in national security. Dr. Albro's research and writing have been supported by the 
National Science Foundation, Mellon Foundation, Rockefeller Foundation, and the American 
Council for Learned Societies, among others. Dr. Albro has also been a Fulbright scholar, and has 
held fellowships at the Carnegie Council for Ethics in International Affairs, the Kluge Center of the 
Library of Congress, and the Smithsonian Institution. Albro recently served on National Research 
Council’s Committee on Unifying Social Frameworks and teaches in the School of International 
Service at American University. Albro used his paper to examine the concept of “culture” as involved in the 
social sciences, and as deployed in the context of computational social modeling and simulation in national security. In 
doing so, Albro identified significant disconnections between the way that cultural anthropologists 
and computational social modelers and simulation proponents approach the study of culture. Not 
only does this raise questions about how to assess the validity of cultural data, but highlights how 
computational technologies may exclude forms of information and knowledge, such as narrative, 
that may be critical for decision-making but unwieldy in computational projects.   
 
Phillip Huxtable received his PhD in Political Science in 1997 from the University of Kansas, with 
a focus on African Politics and quantitative analysis.  Since joining the U.S. Department of Defense 
in 1999, he has filled a variety of roles, leading teams focused on incorporating the theories and 
methods of the social, engineering, and physical sciences into analysis. Huxtable currently leads a 
team of senior scientists and engineers charged with assessing emerging analytic technologies for 
their potential relevance to future national security issues. In his paper, Huxtable describes rising 
interest in computational social science among national security and defense communities.  
However, he points out that academic social science, including its computational form, is not well tuned to the 
demands of government decision-making.   He suggests that government agencies examine how they invest 
in, plan, and evaluate social science projects, emphasizing that multi-disciplinary, collaborative 
approaches can facilitate the adoption of new capabilities into existing analytic communities.  
 
Michael Vlahos is Professor of Strategy at the United States Naval War College. He is the author of 
Fighting Identity: Sacred War and World Change, an analysis of how war — as sacred ritual — shapes 
collective identity.  His career includes service in the Navy, the CIA, Johns Hopkins, and the State 
Department. Dr. Vlahos submitted a brief paper and provided insightful comments during the 
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seminar, but withdrew his paper from publication.  His remarks are noted in the transcript of the 
workshop and we have included some of his comments in the summary report.  
 

2.1.2. Discussants 
In addition to the paper contributors, we invited several discussants to help us review and frame the 
issues.  Each was selected for experience in computational modeling and simulation, national 
security decision-making, the intersection of science and policy, or all three.  Our discussants’ 
biographical statements are below: 
 
Alyson Wilson was invited as a discussant because of her extensive experience in developing and 
applying statistical models for national security problems.  She is an Associate Professor in the 
Department of Statistics at Iowa State University and a Scientist 5 in the Statistical Sciences Group 
at Los Alamos National Laboratory. Dr. Wilson is the founder and past-chair of the American 
Statistical Association’s Section on Statistics in Defense and National Security. In addition to 
numerous publications, Dr. Wilson recently co-authored a book, Bayesian Reliability, and has co-
edited two other books, Statistical Methods in Counterterrorism: Game Theory, Modeling, Syndromic 
Surveillance, and Biometric Authentication and Modern Statistical and Mathematical Methods in Reliability.  Dr. 
Wilson received her PhD in Statistics from Duke University, her M.S. in Statistics from Carnegie-
Mellon University, and her B.A. in Mathematical Sciences from Rice University. 
 
Gerald Epstein received S.B. degrees in physics and in electrical engineering from the 
Massachusetts Institute of Technology and a PhD in physics from the University of California at 
Berkeley. He has extensive experience working in the intersection of science, policy-making, and 
national security and provided a valuable perspective on the contexts in which CSS modeling and 
simulation tools are being sought and deployed.  Epstein joined the American Association for the 
Advancement of Science (AAAS) Center for Science, Technology, and Security Policy (CSTSP) as 
Director in October 2009. Prior to joining CSTSP, he was Senior Fellow for Science and Security in 
the Homeland Security Program at the Center for Strategic and International Studies, where he 
worked on reducing and countering biological weapons threats and improving relations between the 
scientific research and national security communities.  Dr. Epstein is helping McNamara assemble a 
policy seminar on this topic at AAAS in 2011.  
 
Charles Gieseler is a software engineer who is interested in human computer interaction and 
computational modeling. He completed a Masters in Computer Science from Iowa State University 
in 2005 with a focus in machine learning for agent-based computational economics. He is currently a 
software engineer working with the Cognitive Modeling Department at Sandia National 
Laboratories, where he is developing user interaction and simulation technologies for cognitive 
modeling applications. 
 

3. Workshop Findings 
The workshop discussions covered a wide range of topics, from the philosophical underpinnings of 
modeling and simulation in the natural and social sciences, to the practicalities of introducing new 
technologies into existing work environments.  We take the energy and range of these discussions as 
a sign that the workshop was successful in provoking fruitful exchanges, but it does make 
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summarizing the key themes a bit challenging.  The summary below pulls out some themes that 
occurred repeatedly in the discussions. 

3.1. Concerns about Applied Computational Social Science   
The workshop participants expressed both excitement and concern about the explosion of research 
and interest in computational social science.  Several of the participants with expertise in 
computational social modeling and simulation described important advances; e.g., in social network 
analysis and modeling, while others argued that computational methodologies have the potential to 
dramatically advance the social sciences.  All agreed that generous national security investments are 
playing an important role in the development of CSS methodologies; however, the application of 
these technologies in real-world environments was a source of concern for all the participants.  
 
Since the 9/11 attacks, there has been an increase in the number of U.S. government-funded CSS 
projects oriented toward topics of interest to national security policy and decision makers.  Indeed, 
one of the major themes of the workshop was the impact of national security funding on the field. 
The second day of the seminar opened with a long discussion about the relationships among 
academic social science, applied and computational social science, and national security decision-
making.  Workshop participants agreed that national security and defense investments through 
agencies like the Defense Advanced Research Projects Agency (DARPA) among others can have a 
huge and positive impact on a field’s growth.  However, such large investments can quickly run 
ahead of the state-of-the-art in academia, making it difficult for professionals outside of the defense 
trajectory to keep track of how computational social science is evolving in these domains.   
Moreover, as several of the seminar participants pointed out, computer scientists have an advantage 
over their social science colleagues because they have a stronger tradition of interacting with the 
national security community.  
 
As a result, the “computational” part of the broader “computational social science” community may 
have a stronger presence in national security discussions than do formally trained social scientists. 
Indeed, many of the participants commented on the absence of social science expertise, both 
qualitative and quantitative, in computational social modeling and simulation projects. One 
participant related an experience at a CSS conference: when she asked how many people in the room 
had training in the social sciences, she discovered that almost all the workshop participants were 
computer scientists.  As she pointed out, it is difficult to evaluate the quality of a model and/or 
simulation without some basic understanding of the target domain.  
 
Along these lines, several workshop participants expressed the opinion that computational social 
modeling and simulation technologies are being oversold as predictive technologies. One of the 
participants observed that military and intelligence clients are so interested in predictive capabilities 
that they tend to invest in projects that claim predictive goals, without necessarily considering what 
prediction means in the context of social phenomena. Another participant observed that these 
clients rarely specify what they expect from a model. She pointed out that expectations for a ‘good’ 
model are not clearly spelled out they are unlikely to be met, which jeopardizes future investments in 
the field.   Both these participants agreed that educating the client community about what 
computational social models and simulations can and cannot do is an important challenge for the 
CSS community. 
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The issue of transitioning tools to users was a recurrent theme as well.  Not only do many CSS 
practitioners lack formal training in the social sciences, but social scientists rarely have training in 
software development.  This raises problems when computational techniques are being advertised to 
defense and intelligence analysts as “tools.” At a very basis level, scientifically “correct” modeling 
and simulation technologies may not meet user requirements for usability or utility.  This is not 
unique to computational social science.  Software developers often do not appreciate how new 
technologies impact people’s work practices in ways that may be awkward or troublesome from the 
user’s perspective.  When new technologies flop, it is often because the proponents of new tools 
failed to account for important factors in the use environment, such as ensuring the traceability of 
users’ analytic judgments to reliable data sources.    
 
More importantly, computational modeling and simulation technologies may require significant 
methodological and domain experience to use them properly. Two of the participants with extensive 
national security community expertise observed that the interdisciplinary nature of computational 
social science complicates the challenge of technology transition, because CSS technologies embody 
deep forms of expertise that may not be easy to throw over the proverbial fence. Users may be 
reluctant to trust black box models that they do not understand; or, more dangerously, they may put 
too much faith into computational modeling and simulation technologies whose limitations they do 
not fully appreciate. This provoked a discussion of social network analysis, which - as Jeffrey 
Johnson describes in his paper - is prone to a number of errors that can threaten analytical validity.  
Lacking training in theory, methods, and techniques, it is easy to make mistakes that can have 
existential implications when network analysis products are used to support very high consequence 
decisions, such as targeting in operational contexts.  
 

3.2. Computational Social Simulation as Distinct Form of Computational 
Science 

McNamara and Trucano’s provocation paper argued that applied CSS projects (such as those being 
pursued for national security decision-making) can leverage techniques and approaches from fields 
like computational physics to develop more robust approaches for evaluation and deployment.   
However, several of our participants pointed out that modeling in the social sciences is a different 
enterprise than in the physical sciences, and asserted that this has implications for issues from 
application to validation.        
 
For example, in his paper, David Sallach elaborated on the McNamara-Trucano paper by engaging 
the domain specific aspects of the social sciences, including endogeneity, nonlinearity, sequence 
effects, the intentions of actors and the importance of context, that make validation very challenging 
in the social sciences.   In doing so, he asserted that computational social modeling and simulation 
projects are qualitatively different from computational physical modeling and simulation projects.  
Social science is inherently messy, he argued, and techniques for performing and evaluating 
simulations in the physical sciences are unlikely to provide clever or creative ways to avoid all that 
messiness.   
 
Mark Bevir’s paper made similar points, but his provoked intense exchanges on the very nature of 
social science vis-à-vis computational modeling and the physical sciences.  During the discussions, 
Bevir noted that much of the discussion about computational social science in the McNamara-
Trucano provocation paper emphasized how models are being used.  He argued that it is equally 
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important to understand how social modeling and simulation projects differ from computational 
models of the natural world. Bevir drew a distinction between natural (physical) and social 
phenomena, pointing out that modeling in the natural sciences – for example, physics, chemistry, 
biology, and geology – focuses on processes and objects that do not have intentionality.  This has 
implications for modeling and simulation of social phenomena: it means that the context of human 
action is critical for understanding social processes, because people are acting on their 
interpretations of local events.  Secondly, Bevir argued, social scientists are human beings engaged in 
the act of interpretation; and moreover, they are interpreting the actions and intentions of other 
human beings, as they develop descriptions, explanations, and theories.  By extension, the social 
sciences are themselves interpretive, which means that the theoretical formulations of social science 
are less durable and robust than the theories that physical scientists rely upon.  Other participants 
added that theoretical discussions in the social sciences are likely to be more contentious and 
problematic than in the physical sciences; to external observers, the social sciences can appear to be 
a disconnected jumble.  
 

3.3. Modeling, Simulation, and Diversity in the Social Sciences 
In highlighting the difference between natural and social phenomena, Bevir’s paper opened a series 
of exchanges about the nature of knowledge in the social sciences, and the implications for how 
social science research, techniques, theories and data are incorporated into national security decision-
making.   The discussions that took place in the workshop mirrored longstanding debates among 
social scientists about the philosophical underpinnings of social science knowledge.   Without diving 
too deeply into these topics – which can quickly become esoteric and confusing – we want to call 
attention to these debates, because they are germane to what people believe can be done with 
modeling and simulation in social domains.  They influence how we approach the themes raised in 
the McNamara-Trucano paper, such as verification and validation, usability and usefulness, and 
predictive applications.  They are also important in considering whether computational social 
modeling and simulation projects represent an optimal means of incorporating social science 
knowledge into decision-making.   
 
Social scientists have many different views about how and if social science can establish reliable, 
replicable knowledge about the world, and the extent to which social realities can be studied 
objectively in the same way that, say, particle physicists study the elementary constituents of matter.4  
For some social scientists, the goal of social sciences is to account for the real world as objectively as 
possible, using techniques that draw on the scientific method.  Realism in the social sciences asserts 
that social phenomena exist independently of our perceptions of reality, and that it is both possible and 
necessary to establish theoretical principles that approximate general social truths.  This perspective 
on social research tends to be equated with quantitative methodologies, which are widely perceived 
as more rigorous and objective. However, realism is independent of methodological selection; many 
social scientists argue that quantitative techniques are as prone to subjectivity as qualitative ones, and 
that rigorous qualitative research techniques are equally suited to identifying and analyzing social 
phenomena.   
 

                                                 
4 Some would argue that all scientific research endeavors, even those that aspire to the most rigorously objective 
knowledge, are inherently prone to subjectivity. That, however, opens up a can of epistemological and historical worms, 
and is a topic for another paper.  
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Other social scientists are less comfortable with the idea that social phenomena can be apprehended 
independently of our perception and conceptualization. They are reluctant to assert that objectivity 
and quantification necessarily enable social scientists to transcend the social worlds in which they are 
embedded.  They point out that social scientists are themselves social actors who occupy particular 
positions in the social world. Not only do social scientists engage the people they are studying, but 
our social, cultural, linguistic, and psychological positioning necessarily shapes the lens through 
which we perceive, apprehend, and interpret what we study.  In other words, social science is 
reflexive.  Moreover, as some discussants pointed out, human behavior is reflexive: human beings 
interpret the world, act on those interpretations, then perceive and interpret outcomes; we then 
these interpretations of the world back into their behavior. This brings a recursivity and complexity 
to social dynamics that is absent in the physical world, because – as Bevir’s paper makes clear – so-
called “natural” (physical) phenomena are not responding to their ongoing interpretations of 
context.    Representing reflexivity in computational modeling and simulation projects is a significant 
research challenge for computational social scientists. 

3.3.1. Communicating Diversity to Consumers of Models and Simulations 
Workshop participants agreed that neither decision nor policy-makers are likely to be aware of 
epistemological5 debates unless they have formal training in the social sciences.  In fact, many of the 
non-social scientists in the workshop commented that social scientists were discussing unfamiliar 
concepts and language.  However, insofar as computational social modeling and simulation is a form 
of social science, we also agreed that funders and consumers of these technologies should at least be 
aware of such debates.   
 
For one thing, this awareness helps explain the disunity of the social sciences (what one participant 
colorfully called their “jumbledness”) as more than disorganization or hyper-specialization.  After all, 
if disunity is an organizational problem, then it can be fixed if social scientists could identify and 
commit to a more coherent set of theories and practices. However, the social sciences are a 
heterogeneous set of theories, practices, and forms of knowledge with many different 
epistemological commitments. Just because all social sciences are “social” does not mean that they 
are necessarily compatible with each other.  Cultural anthropologists, for example, often pursue a 
dialogic approach to research, co-creating narrative descriptions of social realities in concert with the 
people embedded in them.  These dialogic approaches produce richly descriptive accounts of a 
community’s social reality, but the idea that social scientists should collaborate with research 
“subjects” violates some researchers’ beliefs about distance and research objectivity.  Moreover, it is 
difficult to reduce these narratives into computationally tractable abstractions; doing may so rob 
them of the richness that makes them valuable.  
 
Secondly, one’s perspective on the nature of social science knowledge can influence the selection of 
modeling and simulation methodology, the collection of data, and the process through which 
models are developed and evaluated. For one thing, all models imply some degree of abstraction, 
which entails choices about what to include and what to filter out.  As one discussant put it, all 

                                                 
5 “Epistemology” was another term that the workshop participants flagged as potentially jargon-ish for decision and 
policy-makers, particularly those without graduate training in the sciences or social sciences.  Epistemology is the branch 
of philosophy that addresses, literally, how we know what we know: the processes through which we seek knowledge 
establish facts, and justify truths about the world.   Because epistemology provides the philosophical foundation for our 
assertions of truth and reliable knowledge, the fiercest debates among researchers often revolve around epistemological 
disagreements. 
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modeling efforts entail a “logic of selection” that necessarily influences simulation outputs, and that 
may or may not be articulated to decision makers (this is theme that Hemez addressed in his paper 
as well).   One’s logic of selection is likely influenced by one’s underlying epistemological 
commitments, in addition to disciplinary-specific training; but - importantly - logics of selection can 
be assessed and evaluated when they are clearly stated and documented.  
 
Thirdly, epistemological commitments influence how researchers approach the modeling process.  
Many modeling and simulation projects entail only minimal contact with the target communities or 
social groups under study (as when secondary datasets are used); or may not specify any particular 
social group at all but describe a general process instead.  However, these are not the only ways to 
approach social science modeling and simulation. For example, two of the participants described 
collaborative modeling and simulation approaches, in which members of the communities under 
study become participatory stakeholders in the creation of the simulation, providing data and 
suggesting ways of applying findings6.  These participatory modeling projects are similar to what 
Albro’s paper describes as “joint co-creations” of ethnographic accounts.  Similarly, several of the 
participants with experience researching user communities emphasized that incorporating users into 
the development of technologies may be critical if they are to understand the assumptions 
embedded in a simulation and apply them appropriately.   
 

3.4. Computational Models of Culture 
Military and intelligence decision makers are increasingly recognizing the importance of 
understanding culture as an important parameter in a range of problems, from religious 
fundamentalism to insurgency dynamics.  This interest extends to creating computational models of 
culture (e.g., the Human, Social, Cultural and Behavioral Modeling program, which resides in the 
U.S. Office of the Secretary of Defense).  However, the idea of developing computational models of 
“culture” is unfamiliar to many anthropologists, for whom computational modeling and simulation 
is not a mainstream methodology.  Because cultural anthropology tends to produce narrative 
accounts (“ethnographies”) of research findings, how to represent these narratives in 
computationally tractable format, without losing the contextual information embedded in narratives, 
is a difficult question.  
 
Albro opened his paper by arguing that the U.S. Department of Defense’s commitments to 
computational modeling and simulation are shape DoD approaches to studying and influencing 
culture - rather than cultural research demanding computational methodologies.  For example, 
computational modeling and simulation projects typically demand data in particular structures and 
forms; in doing so, they set methodological agendas that are likely to exclude much of the data and 
information that cultural anthropologists develop. Computing implies an emphasis on code-able 
variables at the expense of narrative descriptions.  Albro’s reading of the metaphors that underlie 
computational social simulations in institutions like the U.S. Department of Defense emphasize 
concepts like systems, structure, and functionalism that emphasize the coherence and stability of culture, 
and/or that treat “culture” as an underlying mental state that shapes behavior. In contrast, many 
cultural anthropologists understand culture to be a kind of public discourse in which members of a 
community display, debate, re-interpret, and extend notions of collective identity.  
                                                 
6See, for example, Olivier Barreteau, 2003, “The Joint Use of Role-Playing games and Models Regarding Negotiation 
Processes: Characterization of Associations,” Journal of Artificial Societies and Social Simulation vol. 6, no. 2 
http://jasss.soc.surrey.ac.uk/6/2/3.html.  
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The group’s discussion of Albro’s paper once again highlighted differences in how social scientists 
approach the challenge of culture in their research.  For example, several of the discussants pointed 
out that some cultural anthropology does incorporate quantitative methods and modeling 
techniques.  Although many cultural anthropologists rely on qualitative ethnographic methods to 
construct narrative accounts of culture, there is quantitative tradition in cultural anthropology that 
incorporates both qualitative and statistical techniques. Another commented that Albro’s paper 
represents one perspective on culture: that it is as a set of social understandings that are 
contradictory, loosely integrated, thinly coherent and contested. However, other anthropologists and 
sociologists describe culture as shared understandings and consensus worldviews that are more 
evenly distributed across members of a social group.  Whether either formulation is reducible to a 
computational model was a matter of some discussion in the group.  
 
Reflecting on Albro’s paper, another participant commented that computational social science is not 
as strongly rooted in the social sciences as it is grounded in computer science, artificial intelligence, 
and operations research; it is perhaps not surprising that these practitioners have developed theories 
and methods that draw on their respective fields’ root metaphors.  She also emphasized that the U.S. 
Department of Defense openly seeks to influence social behavior, and metaphors like “system” 
usefully imply the possibility of intervention. However, while such metaphors open the door to 
computational techniques, they may also lead decision makers to exclude significant sources of 
information, such as qualitative data sources or narrative accounts, that do not fit well with 
dominant metaphors or analytic approaches.   This could lead decision makers to adhere to 
preconceptions that are perhaps not well supported in the work of other researchers.  

3.5. Prediction and Simulation Credibility 
Francois Hemez’ paper also raised questions about the epistemology of modeling and simulation, 
but from the perspective of computational physics and engineering.  McNamara introduced Hemez’ 
paper by observing that it is easy to assume that computational modeling and simulation of physical  
systems is a relatively straightforward process, compared to social modeling, given that the physical 
sciences are characterized by relatively stable theories that are mathematically expressible and enjoy 
high disciplinary consensus.  However, all models are abstractions, which means that they necessarily 
simplify complex phenomena.  In his work at Los Alamos, Hemez has considered and specified 
what it means to say that a model/simulation of a physical system is credibly predictive.  McNamara 
and Trucano asked him to extend his thinking to computational models of social phenomena, which 
he very graciously agreed to do.   
 
Hemez explained that as the nuclear weapons laboratories expanded their use of computational 
physics and engineering simulations in the wake of the Comprehensive Test Ban Treaty, the impact 
of these tradeoffs on the credibility of predictive simulations became more important, which led him 
to develop a series of arguments about what is required to demonstrate predictability across a class 
of models.  Hemez’s paper is an analysis of “predictability” in modeling and simulation when 
models are being used to augment lack-of-knowledge about phenomena of interest, and therefore 
represents a much more general discourse about modeling and simulation under conditions of 
uncertainty.  
 
Computational modeling and simulation technologies enable researchers to instantiate and leverage 
knowledge toward phenomena that are not fully understood.  However, because modeling and 

 29 



 

simulation necessarily involves abstraction, the trade-offs required can affect whether or not a 
simulation is credibly predictive.  Hemez’s paper describes models as a kind of filter that resolves 
some phenomena more sharply at the expense of others. Some phenomena will be resolved in great 
detail, while others will be embedded in the overall model in the form of assumptions. Assessing the 
impact of these less-resolved assumptions on model-based predictions is critical if decision makers 
are to weigh results from models appropriately in their assessments.  In his paper, Hemez laid out a 
set of concepts and a framework for examining predictability and assessing confidence in 
predictions.  
 
In discussing the paper, one of the participants said that he could see the issues Hemez raised in the 
context of computational physics could be applicable in computational social science.  He suggested, 
however, that some of the principles in would need to be recast for the social sciences, because the 
phenomena under study are even more unruly than the complex physics and engineering problems 
that Hemez describes.   For example, first principles are rare in social science, and social scientists 
do not have classes of “equivalent” models that lend themselves to the kind of analysis that Hemez 
described in his paper. 
 
Another participant commented that computational models and simulations in the weapons 
laboratories are part of a highly connected set of ongoing research activities.  Computational social 
models and simulations are less embedded in complementary research and data collection activities. 
Moreover, this participant noted that Hemez linked predictability to concepts like robustness, 
fidelity, and consistency; for this participant, Hemez’ approach to studying prediction was quite 
different than the “Nostradamus” goal of prediction that seems to be implied in many applied 
computational social science projects.   
 
Several of the participants, in contrast, argued that physicists and engineers in the nuclear weapons 
programs actually do struggle with problems that are quite similar to the ones facing social scientists. 
In the weapons programs, for example, physicists and engineers are attempting to understand and 
predict phenomena that are outside their span of control.  Reproducibility and control are often 
impossible for complex physics processes such as those that occur in an underground nuclear test. 
Moreover, the logic-of-selection problem is also in physics and engineering modeling for nuclear 
weapons certification.  The destructive nature of weapons behavior means that scientists have to rely 
on indirect measurements; they have to infer meaning from what is gathered in the field, and these 
inferences may be based on the same principles that are being examined. Moreover, models set 
conditions for evaluating experimental data. At least in the challenges of modeling and simulation, 
he argued, the differences between the hard and soft sciences are perhaps less firmly delineated than 
one might assume.  
 
Moreover, codes present their own complications.  As physicists develop larger computation 
models, software engineering becomes increasingly important because how software is built affects 
how the model behaves. Models themselves can introduce non-intuitive behaviors, particularly in the 
case of very high-fidelity computational physics and engineering.  Weapons programs codes as 
highly complex, with hundreds of thousands, even millions of lines of code.  They can easily take on 
a life of their own:  for example, when a code simulates a process that is not physically possible, this 
raises the question of how the code followed that particular path. Surprises are not unusual; 
researchers might assume that a code is coupling physics in a particular way, but later discover that 
the code did something different. Moreover, evaluating these codes is organizationally challenging.  
In the early days of computational science, codes were written by a single person who knew about all 
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the code, and who was likely to be the only user of the code.  The codes are now so complex that no 
single person can know everything.  Instead, parts of codes are the responsibility of local experts 
who know their part very well.  However, because parts of the codes interact with each other, issues 
are difficult to identify and analyze: they are never in a single piece of code, but in the interactions 
among them.   It is difficult to diagnose such complex software products.  
 

3.6. Models, Predictive and Otherwise 
Hemez’ paper opened a long discussion about the interrelated topics of prediction, verification and 
validation, and the physical and social sciences.  However, a more fundamental question soon 
emerged: Do modeling and simulation projects always entail predictive goals, or are there other, 
non-predictive roles for modeling and simulation projects? This is not just a problem for national 
security, but for any domain in which modeling and simulation is used to support decision making. 
This topic provoked a long, sometimes vehement exchange about “prediction:” if orientation 
toward the future always entails prediction; if prediction is possible when knowledge is incomplete; 
and whether different kinds of prediction exist.  
 
One seminar participant asked if model developers, users, and other stakeholders always expect 
models to predict, or do they treat them as instruments that enable understanding of a phenomenon, 
as models are often used in the natural sciences (though one seminar discussant argued that 
“understanding” may itself entail prediction)? This is a key question that the modeling and 
simulation community must address in its interactions with the user community. Funders of 
computational modeling and simulation projects may emphasize prediction as a significant goal for 
the research they support.  It is necessary to challenge the culture and ethos of the client community 
so that they can use and interpret models in a more sensible way. 
 
Another participant with experience in military modeling projects argued that the process of 
modeling has important uses beyond forecasting or prediction. If organizations are using simulations 
to build understanding about a problem space, identify ranges of possible outcomes, or to support 
self-assessment and planning, are they really doing prediction? Formalizing implicit beliefs and 
assumptions can help people recognize the incompleteness of their knowledge. Participatory 
modeling and exploratory modeling are approaches that enable people to understandings about the 
world, and to identify ranges of possible outcomes for events and actions. These are worthy and 
legitimate reasons to do modeling beyond “prediction.”  
 
In contrast, another participant argued that possibility is actually a form of prediction, because any 
scenario that is identified as possible involves a cluster of features, about which a claim of 
relationships and order is being made.  Others disagreed, saying that prediction indicate a specific 
and narrow claim about the future. One of the social scientists with experience in modeling and 
simulation argued that prediction in the social sciences may indeed be a different kind of prediction, 
one that may less expressible in quantitatively precise terms, but may permit the exploration of 
counterfactuals.  In many cases, it may be impossible to do more than qualitative prediction, or to 
identify boundary conditions for possible outcome spaces.   In many cases, it may be impossible to 
do more than qualitative prediction, or to identify boundary conditions for possible outcome spaces. 
As another participant emphasized, however, even qualitative “predictions” can and should be 
subject to evaluation.  
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In discussing the limitations of predictive modeling, one of the participants described an ecological 
experiment looking at intertidal food webs. In the experiment, the top predator was removed from 
the food web and it was predicted that the prey items of this predator would directly benefit from 
the removal (i.e., each would flourish with no predatory pressures).  However, this ultimately caused 
an explosion in the population of a particular barnacle due to its ability to out compete all other 
intertidal species for space. This outcome that was completely unforeseen in the modeling process. 
Complex systems have latent and emergent properties that can make prediction extremely difficult.  
These observations recalled Hemez’ points about the limitations of modeling when knowledge of 
the domain represented in the model is incomplete.  Understanding the sensitivity of model outputs 
to lack-of-knowledge and embedded assumptions are critically important if modeling and simulation 
results are to be used in decision making.  
 
As McNamara and Trucano pointed out in their provocation paper, the CSS literature uses a variety 
of synonyms for “prediction,” such as forecasting and anticipation, in trying to differentiate among 
different types of prediction.  What terms mean in practice is rarely defined and likely not well 
understood, which leaves a lot of room for claims that can neither be evaluated nor substantiated.  
Moreover, the level of rigor associated with these different kinds of “prediction” can vary 
tremendously.  
 

3.7. Verification and Validation7 
Turnley’s paper also explored the problem of prediction, in relation to verification and validation.  
In the physical sciences, “prediction” is often tied to “validation,” in the sense that validation 
requires the comparison of a model’s prediction against an observed, real-world effect.  If we 
assume that some uses of models do not entail “prediction,” then perhaps validation approaches 
grounded in predictive fidelity are setting unreasonable standards for assessing their external 
correctness. For example, she pointed to face validity as an alternative way to address the credibility 
of a model.  
 
One participant commented that specifying many different types of validation could lead to 
confusion on the part of stakeholders.  Another participant commented that Turnley’s argument 
could be read as justifying avoidance of rigorous validation, which involves the identification of 
referents that support systematic assessment of the model’s relationship to the external world.  He 
acknowledged that identifying referents is difficult in the social sciences, and observed that 
validation presents pragmatic challenges when time and money are short.  A third argued that 
validation is a process that begins with specifying the intended use and application of a model; once 
the stakeholder community agrees on that usage, appropriate techniques to assess external 
correctness of the model should derive from that. Face validity may be fine if that is consistent with 
how the model will be used; however, he pointed out that techniques like face validation rely on 

                                                 
7 Verification and validation (V&V) are processes that assess modeling and simulation technologies for internal 
correctness (verification), and external correspondence to real-world phenomena of interest (validation). There is an 
enormous body of literature dating back to the 1970s that addresses methods, techniques, tools, and challenges for 
V&V. Most of this research has been done in fields like computational engineering, artificial intelligence, and operations 
research. However, in the computational social science community, there is an emerging body of literature addressing 
the challenges of verifying and validating computational social science models and simulations.  For more information, 
see McNamara and Trucano paper, Appendix A, page 9.  
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experts, which raises the question of who the experts are, how they are selected, and how their 
expertise vis-à-vis the model is evaluated. 
 
One of the participants, a researcher with extensive experience in government agencies, agreed that 
model validation is extremely important, but questioned the extent to which frameworks and 
concepts from arenas like weapons physics are applicable to computational social models and 
simulations. The rapid evolution of social dynamics, and of national interests in those dynamics, 
presents significant challenges for model construction and evaluation – particularly verification and 
validation, which can be time and resource intensive. The problems that analysts deal with evolve so 
quickly that very detailed, contextually specific models and simulations will have a short shelf life. 
Because models have such short self-lives, and the decision cycles are so short, V&V is challenging.   
 
Where to draw the line between rigorous assessment and pragmatic judgment in CSS applications, 
given the operational challenges of gathering and analyzing social science data, is a difficult 
challenge.   Organizations struggle with this problem, and it is unclear what resources are being 
provided to support verification and validation research vis-à-vis computational social modeling and 
simulation programs in large government agencies. It is often difficult to get institutions to put the 
time, financial, and personnel resources into verification and validation activities.  
 

3.8. Usability and Utility in Computational Social Science 
Verification and validation have an analogous relationship to the twin concepts of usability and utility.  
Usability testing assesses whether a software product is constructed so that people can operate it.  
However, usability says nothing about the relevance of the software product to the work that it is 
intended to support.  Utility assesses whether the software’s functions map to the real-world tasks 
and goals of its intended human users.  A related concept is adoptability: the degree to which a 
technology will be picked up for use across the user community for whom it is intended. These were 
major themes in the workshop and were explicitly addressed in both Huxtable and Scholtz’s papers.  
Both authors asserted that usability, utility, and adoptability constitute difficult issues for CSS 
technologies being leveraged in the national security community. 
  
Scholtz’s paper discussed the problem of transforming computational modeling and simulation 
projects into analytical tools that people will find usable, useful, and trustworthy. CSS tools raise 
particularly vexing challenges in this regard, as analysts may not fully understand how models are   
generating solutions.  They are unlikely to adopt new technologies if they do not understand how 
they work, and if they do not trust them. Studies of technology trust provide varying perspectives on 
this issue. Some suggest that analysts tend not to trust technologies that have been developed by 
outsiders who do not appreciate the analytic process.  Others assert that “black box” technologies 
are fine, as long as the users understand the inputs and outputs.  In the case of computational social 
modeling and simulation technologies, however, users may be doing parameter studies (for example, 
to assess ranges of possible outcomes given variations in initial conditions), that require some deep 
familiarity with the model and the phenomena it covers. When analysts do not understand the 
intricacies and subtleties of a problem, they may have less confidence in their assessments. 
 
One way of addressing this problem is to ensure that users of computational social modeling and 
simulation technologies are involved from the earliest stages of the development process.  However, 
who the “users” are is not clear.  In discussing her paper, Scholtz identified at least three types of 
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stakeholders in these projects:  analysts who run the simulations, policy and decision makers who 
consume information; and the technology and/or subject matter experts performing the research 
and development. The multiple user communities make “utility” design and evaluation a challenging 
problem.  Participatory modeling is one way of supporting deep familiarity with models and 
domains, but it is difficult to do this in the intelligence community because of access issues and 
constraints on analysts’ time. She suggested a range of alternative methodologies for gathering data 
about analyst interactions with information, not only to develop tools that are more adoptable but to 
identify ways of teaching the users about how to properly apply the technology in a given problem 
space.  
 
Several of the anthropologists pointed out that ethnography can be useful in this regard; for 
example, organizational and development ethnography provide techniques to help technology 
developers, funders, and advocates understand how new tools disrupt workflow or shift access and 
control over information resources.   However, others observed that user-oriented design techniques 
are unlikely to solve the adoption challenge.  Instead, government managers may have to play 
forcing function to get analysts to adopt new tools. Workforce training and developing will also be 
important in encouraging analysts to adopt new technologies; for example, getting an Army sergeant 
to use a computational simulation requires education, just as piloting an airplane requires skills, 
training, and experience.  Modeling and simulation tools cannot in and of themselves “package” 
expertise for delivery to external user communities that may lack domain experience, modeling and 
simulation expertise, or both.  For some kinds of modeling there may actually be requirements 
(education, training, experience) placed on users, as opposed to identifying user requirements for 
software. 
 
In discussing his paper, Huxtable agreed with Scholtz’ observations about multiple stakeholders in 
modeling projects – researchers, technology developers, users – each of which have distinct 
interests. He described a demand among analysts and decision makers for techniques to characterize 
complicated social, political, and historical problems.   However, despite substantial government 
investments in a range of modeling projects, Huxtable believes that most modeling and simulation 
projects are more “proof of concept” than accepted tool.  He related this to several factors: first, 
government contracting rules restrict the kinds of interactions that can take place between 
technology developers and end-users. Second, interacting with academic experts is challenging. 
Unlike their academic counterparts, military and intelligence analysts worry about how to intervene 
and effect change.   They are charged with implementing policy made at higher levels of 
government, are answerable to these higher levels of government, and often work on tight timelines 
and budgets.   Third, academia does not generally reward transdicisplinary or applied research, which 
lessens academic motivations to partner across disciplinary and organizational communities to 
develop working tools. And finally, many researchers do not want to get security clearances. This 
makes hard for them to interact with the users, and also creates duplication of effort, since 
academics on the outside are often not aware of complementary classified work.  
 
Huxtable suggested that relatively little attention has been paid to the more basic issue of how social 
science research methods might be used in military and intelligence analysis.  It is deceptively easy to 
find problems that fit computational tools. Identifying and integrating analytic and research 
techniques first would help developers identify computational requirements as (and if) they emerge.  
Secondly, he wished that there were more flexible tools that could support a range of analytic 
approaches, such as libraries of agents or systems dynamics techniques that can be quickly applied as 
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appropriate.  These tools should be adequately evaluated and well-documented, so that users know 
what they are using when they pull such tools off the shelf.  
 
An even bigger problem, however, is assessing whether or not modeling and simulation technologies 
improve decision-making. Even demonstrably “better” models will not necessarily improve 
decision-making, as people in the military and intelligence communities face a range of constraints 
beyond the tools available to them.   One participant noted that decision makers rarely base their 
assessments solely on the results of a model; in fact, it is difficult to assess how and to what degree a 
model contributes to that decision, much less to an outcome. These issues complicate how we 
evaluate the impact of new technologies, including CSS models and simulations, on decision 
outcomes.    
 

3.9.  Ethics, Modeling, and Decision-making 
Closely related to the topic of users and usability is the issue of ethics. The problem of “ethics” in 
“computational social modeling and simulation” is not a mainstream topic of conversation in the 
CSS community.  In her paper, Lucy Resnyansky observed that ethical discourse around 
computation tends to focus on issues of privacy, confidentiality, and civil liberties.  Some of these 
issues may pertain to computational social science as well (as when researchers use communications 
datasets to study social patterns), but computational social modeling and simulation, particularly in 
its applied form, probably raises its own quandaries.  
 
Resnyansky noted that computational social science represents the intersection of a number of 
fields, including social science, information technologies, and computational modeling and 
simulation, each of which have their own ethical challenges and underpinnings.   For example, 
companies that sell enterprise software systems are deploying large data collection, tracking, 
management, and analysis tools that can have a profound impact on management effectiveness and 
decision-making.   Similar challenges may be present in applied computational social science, where 
software models are intended to affect decision-making and outcomes in areas where public trust, 
resources, and even human lives may be at stake.  Issues of responsibility and accountability are 
paramount, but difficult to locate.  In addition, when new tools are introduced into a workplace, 
they may impact organizational workflows in surprising ways.  As several workshop participants 
pointed out, little is known about the diversity of practices in intelligence and defense analysis work, 
and work practices vary tremendously across contexts.  
 
Resnyansky allowed that computational methodologies offer tremendous advantages for social 
research; for example, they allow researchers to replicate and study problems for which real-world 
experimentation would be logistically difficult and/or ethically reprehensible, such as the spread of a 
virus through an urban population.  However, developing models of complex social domains should 
require some research familiarity with those domains, and this is not always present in computational 
social modeling and simulation efforts. In her work with modeling teams, Resnyansky had noticed 
that terms like social, human, cultural, and behavior are not always well defined.  She spoke of the 
intersection of computational social science and national security as a merging of cultures that are 
not familiar with each others’ conceptual assumptions.  This cultural divide is complicated by the 
fact that computational social modeling and simulation in national security is dominated by 
engineers, computer scientists, and physicists who lack theoretical and methodological training in the 
social sciences, and who are also unfamiliar with social science research ethics.  As several of the 
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participants observed during the workshop, computational social modeling and simulation projects 
are often approached as modeling problems first, and as social science problems second.  Several of 
the workshop participants relayed examples of non-social scientists - including computer scientists, 
physicists, and engineers - developing modeling and simulation technologies for social phenomena, 
often without expertise in the relevant social science domain.   
 
Resnyansky’s paper raised another important question: what responsibility do the developers of 
computational tools have for the effects of their technologies downstream?   In most national 
security environments, the “user community” is not unitary; there are people who run models, 
analysts who incorporate model outputs into their analytic tradecraft, policy and decision makers 
who consume the information products that analysts develop, decision makers who take action in 
the field based on what analysts tell them.  This raised the issue of whether computational social 
simulation is being oversold to national security decision makers. Resnyansky told the workshop 
participants that she had reviewed the popular discourse on modeling and simulation, which she 
described as “promotional literature.” She was struck by the way the literature presented techniques 
and methods as “good,” without much discussion of limitations or risks. Huxtable expressed 
particular frustration with the mantra of “situational awareness” that gets attached to computational 
modeling and simulation. The complicated and subtle nature of computational social simulation, and 
the challenges of transitioning that knowledge to users who likely lack similar expertise in the subject 
matter and/or the modeling approach, make claims of computationally-supported situational 
awareness difficult to believe.   It is a truth in advertising problem, he said. 
 
Responding to Resnyansky, one of the participants commented that the ways in which modeling and 
simulation technologies are developed might shape the ethical relationship between developers and 
end-users.  If models are artifacts that are “thrown over the fence” to users, that may entail a 
different set of responsibilities than if the developers are offering to support a process of modeling 
in the context of stakeholder discussions. In the latter case, the modeler is providing an analytic 
service that is couched in a different set of client-developer expectations and products, and may 
even be considered part of the analytic process.  
 
Lastly, the workshop participants agreed that modeling proponents and technology developers need 
to address issues of accountability and responsibility, though whether this is recognized in the CSS 
community is questionable.  A workshop participant described feeling troubled about a perceived 
lack of critical concern about the kind and quality of knowledge that modeling and simulation 
introduces into decision-making. It is important to understand how the norms that govern 
democratic societies, the norms of governance, intersect with the decision making processes that we 
expect from government, and the role of supporting technologies within those.   
 

3.10.  Data, Error, and Social Networks 
As the final paper in the workshop, Jeffrey Johnson’s presentation on social network analysis was 
unique because it focused on particular kind of modeling and simulation methodology.   However, 
his paper also illustrated most of the themes that the workshop participants had discussed during the 
previous two days. 
 
McNamara and Trucano felt it was important to get a social network researcher involved in the 
workshop, because there is so much emphasis on the potential for social network analysis for 
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national security decision-making and confusion over what social network analysis actually entails. 
Data is a critical driver for this enthusiasm: the national security community is faced with an 
explosion in data sources that lend themselves to representation in node-and-arc graphs, such as 
communications records. Indeed, link analysis is commonly used in the intelligence community, and 
involves using node-and-arc diagrams to represent a mental model of relationships among entities in 
a dataset.  
 
However, Johnson emphasized that social network analysis is not the same thing as link analysis.  
Indeed, social network analysis is different technique altogether, because it involves using 
mathematical analysis to characterize the structural attributes of a community, and to assess the roles 
that individual actors play in a community or group.  This kind of analysis can be powerfully 
revealing of a group’s organizational properties, but it is also very sensitive to the quality and 
completeness of data, in ways that may not be apparent to naïve users.  Even small amounts of 
missing data can dramatically impact the conclusions one draws about the posited roles of particular 
actors in networks.  In addition, assumptions about what data means can also lead to erroneous 
conclusions about the nature of a network. Another participant agreed, and pointed out that the 
problem is not just whether or not data are missing, but what data signify. Many of the basic social 
network analysis techniques assume that ties of the same type are formally equivalent, but this 
glosses over significant differences in the content of the relationship or the intent of the actors on a 
network.  
 
As a very basic example, Johnson described working with military analysts using communications 
records to map social networks.  These analysts had not considered that the communication node – 
say, a telephone number – provided only minimal information about the act of communication: who 
was making a call, who was receiving a call, and what was exchanged.  More subtly, building social 
networks from secondary data sources, such as intelligence reports or newspaper articles, is a 
common practice in the intelligence community.  However, this raises some very difficult questions 
about the extent to which these secondary information sources can be used to construct valid and 
complete datasets. Johnson identified multiple sources of uncertainty: erroneous reporting, 
incomplete information, deception, none of which may be immediately apparent to the analyst.   
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4. RECOMMENDATIONS 
The workshop convened in Santa Fe explored a broad range of issues related to computational 
social modeling and simulation, from the impact of new computational techniques on social science 
research to the practicalities of tool adoption among intelligence and military analysts.  
 
In the wake of the workshop, we (McNamara and Trucano) reviewed the insights, commentaries, 
and tremendously good work of the participants who brought their ideas and papers to Santa Fe, 
and distilled the following recommendations.  These recommendations are based on our 
reading of the papers and review of the workshop discussions, and are not necessarily 
representative of all the participants’ views in the workshop.  In fact, we believe that our 
workshop participants could probably each write their own sets of well-informed recommendations 
with nuances that we have missed.  Also, this is not an exhaustive list of the recommendations we 
could have made, nor did we cover all the points and nuances that could have been raised in the 
explanatory text that follows each.  Instead, we attempted to identify the most important 
overarching themes, and to assemble these into a set of interrelated conceptual starting points for 
making sense of these enormously complicated technologies.  We hope the following five 
recommendations will give people both inside and outside the computational social modeling and 
simulation community with a credible starting point to develop well-informed and judicious 
questions about the benefits and risks of using models and simulations in high-consequence decision 
making environments.  
 
RECOMMENDATION ONE:  Design, implement, and assess computational 
social science projects as hybrid, interdisciplinary research and development 
efforts.  
 
We assert that computational social modeling and simulation projects should be analyzed and 
studied as the interdisciplinary processes and technologies that they are. Three domains in particular 
are germane to any assessment of computational social science models and simulations:  social science, 
computational science, and decision support and analysis software. When computational social science 
technologies are applied in decision-making, these domains intersect, as depicted in the diagram 
below: 
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Figure 2: Applied CSS as Interdisciplinary Domain 



 

  
Only an interdisciplinary framework that addresses the multiple domains of research and practice 
that pertain to these technologies has any hope of ensuring complete assessments of their quality 
and correctness. The next four recommendations derive from this intersection, and pertain to the 
design, development, and evaluation of computational social science projects in decision-making 
environments.  Although we have focused on national security decision-making, we see no reason 
why the recommendations we present are unique to national security. Instead, they are applicable to 
any domain in which computational social modeling and simulation technologies are being 
developed to augment human sensemaking for the purpose of supporting decisions, planning, and 
action.  
 
 
RECOMMENDATION TWO: Evaluate computational social modeling and 
simulation projects as a form of social science.  
 
Computational social science is a first and foremost a form of social science. Modeling and 
simulation is a field of methodological research for studying social, cultural, and behavioral 
phenomena. Its application is only as “scientific” as the research design in which it is embedded.   
 
Reframing computational modeling and simulation as a methodology enables national security 
decision makers to compare it to other methodologies and approaches for addressing the problems 
they care about.  Indeed, one question that needs to be asked more frequently and consistently is, 
“Why does this problem require computational modeling and simulation?”  As intriguing and 
compelling as modeling may be, not all national security problems that touch on culture, society, or 
human behavior are necessarily amenable to modeling.  Nor is computational modeling and 
simulation always the most accurate, robust, fastest, least expensive, or most portable way to 
develop and deploy knowledge of a domain.  The intense focus on computational simulation as a 
superior methodology for studying social dynamics comes at the expense of careful consideration of 
other forms of social science research and practice, and perhaps even existing knowledge and 
expertise. Social scientists have developed a range of methods and approaches for studying human 
social, cultural, and behavioral phenomena that concern national security decision makers.  These 
need to be tapped as well; indeed, there are probably significant gains to be realized from coupling 
modeling and simulation with more traditional research approaches in the social sciences.   
 
Secondly, the intense focus on modeling and simulation means that many computational social 
science projects are dominated by people with mathematics, physics, and engineering backgrounds, 
at the expense of domain and methodological expertise from the social sciences. This creates risks 
for decision makers, because models are abstractions that always entail a particular selection logic.  
Modelers without domain knowledge may not appreciate the significance of what they are including, 
the relationships they are specifying, or – most importantly – what they are leaving out.  This is 
particularly true if the model generates simulation outputs that seem to replicate real-world 
phenomena; replication does not necessarily entail validity, explanation, or prediction. There are 
many wrong ways to get the right answer.  Ensuring that relevant domain, theory, and 
methodological experts are involved in the modeling and simulation exercise is one way of 
addressing this problem, although we realize that the selection of a domain expert raises its own 
challenges.  
 

 39 



 

Decision- and policy-makers who are attempting to make sense of a particular computational social 
modeling and simulation effort should ask questions about scientific validity of the theoretical and 
conceptual framework that underpins the model.  They should ask how the modelers identified and 
assessed existing research on the domain, how they connect their work to pertinent questions in the 
social sciences, and to explain how they identified questions that the model is seeking to answer.  
Modelers should also be able to specify and justify the role of modeling in their research design. 
They should speak credibly to the challenging problems of data: how they obtained data, if these 
datasets are primary or secondary data, who collected the data, how, and why; to justify why data are 
relevant to the problem, and to discuss pertinent assumptions, limitations, and sources of error in 
the data. They should be able to explain why particular modeling and simulation approaches are 
necessary for examining this domain, and to articulate the basis for claims to the credibility of their 
simulation outputs.    
 
These are the kinds of questions that most social scientists are accustomed to answering in project 
proposals and reviews. Insofar as they are doing social science, computational modeling and 
simulation practitioners should be prepared address them as well.  In addition, reviews of 
computational social modeling and simulation efforts should seek to involve social scientists with 
experience in selecting and applying different research methods, including computational modeling 
and simulation techniques.   Reviewers should include researchers who are not receiving national 
security funding, to minimize possible resource bias. 
 
 
RECOMMENDATION THREE:  Evaluate computational social models and 
simulations as a form of computational science.  
 
As important as it is to couch computational social modeling and simulation projects in the social 
sciences, it does not go far enough. Social science does not ask questions about algorithms or 
underlying mathematical issues, nor does it point to issues of software implementation, testing, and 
performance. However, the field of computational science does, and framing computational social 
science as a form of computational science raises a second set of issues for evaluating these projects.  
 
We recognize that computational social science deals with complex, often inaccessible phenomena 
and processes, such as the recursive relationships among perception, interpretation, and action in 
human dynamics.   While this creates considerable validation challenges, it does not mean that 
principles from other fields of computational science are irrelevant to computational social science.   
On the contrary, we believe that computational science offers decision makers with mature 
conceptual frameworks for evaluating computational social modeling and simulation efforts as a 
form of computational practice. 
 
Computational models and simulations are complex objects of study in their own right, particularly 
when they are being used to predict or forecast phenomena for which we have limited 
understanding.  Whether or not a computational artifact is properly constructed has tremendous 
impact on the credibility and trustworthiness of its outputs.  Computational science offers a range of 
concepts and methods for studying and evaluating computational models and simulations as 
computational artifacts. Many of these concepts and methods are very basic and domain agnostic, at 
least at the conceptual level: for example, verification is about evaluating whether or not the software 
is correctly implementing a conceptual model. It evaluates the correctness of software, not how the 
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model deals with subject matter. Similarly, good software engineering practices, well-designed testing 
processes, and ongoing documentation can ensure that modeling and simulation projects are not 
prone to inaccuracies and errors that stem from poorly written codes.  Moreover, computational 
scientists who are using modeling and simulation methodologies to assess and support decisions 
about real-world outcomes have developed theoretically sophisticated frameworks for understanding 
the limitations of modeling as a source of predictive information under conditions of uncertainty.   
For example, the closely related field of uncertainty quantification specifies techniques for 
addressing different forms of uncertainty in modeling processes, and for examining how uncertainty 
should be treated in decision-making.   
 
Decision makers should ask about software engineering practices, documentation, and testing, as 
well as how the modeling team is evaluating the correctness and performance of the software it has 
written; how sources of error in the code are detected and mitigated.  At a deeper level, the 
experience of other fields may provide valuable input to the challenges and issues that arise when 
computational modeling and simulation outputs are being used as a source of predictive information 
in decision-making, when knowledge is lacking.    
 
 
RECOMMENDATION FOUR: Evaluate computational social models and 
simulations as decision support tools for individual and organizational use 
communities.   
 
It should not be taken for granted that a modeling and simulation technology is a decision-support 
tool. Tools and technologies are different things.  To say that technology is a tool is to assert that it 
can be employed by human beings to effect some change in their understanding of the world, or in 
the world around them.  Tools afford efficacious human action: they are usable and useful.  They fit 
well into contexts of use: they are adoptable.  Technologies that meet these criteria are likely to be 
used.    
 
In short, computational social modeling and simulation technologies raise complicated questions 
about the relationships among creation, use, and outcomes. Even modeling and simulation 
technologies that have undergone rigorous verification and validation may not meet the demands of 
client, user, or information consumers in government environments.  Relationships and 
responsibilities must be considered before the tool development begins: For example, who decides 
the goals of a model: the people responsible for making decisions, or the modeling experts?  Are 
they one and the same, or is the modeling project distributed across multiple stakeholders?  Who are 
the “users” and what is their relationship to the modeling project?  
 
These questions can be very difficult to address in the fractionated environments that characterize 
government policy and decision-making. Moreover, the kinds of decisions that computational social 
modeling and simulation technologies are expected to support are complicated, ambiguous, often 
poorly understood, and rapidly evolving; and rarely is there a single point of decision-making, nor a 
unitary decision maker.   Issues of context, users, consumers, and communication are critical if 
modeling and simulation technologies are to mature into tools.   
 
Definitions of usability, utility and adoptability that come from the “seller” of the model are not 
acceptable. Setting standards for usability, utility, and adoptability is a task that belongs squarely in 
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the domain of the client or consumer.   We assert that design processes for these technologies 
should involve some attention to the intended areas of application (this is necessary for validation and 
utility) and the intended user communities, if only to ensure that the resulting technologies are both 
usable and useful. A good start is to draw on the research in organizational ethnography to identify 
factors that influence usability, utility, and adoptability in decision analysis tools Moreover, modeling 
and simulation technologies may support insight into complicated social, cultural, and behavioral 
dynamics, but these technologies are not transparent. Models often embed assumptions and 
concepts whose implications and limitations are difficult to appreciate without domain expertise. 
Participatory approaches that involve users in the development process are more likely to produce 
educated consumers/users of both the tool and the information it generates.   
 
We note as well that what means for models and simulations to improve analysis, decision-making, 
or provide insight, is rarely well specified.  This makes evaluation of impact very difficult. Human-
computer interaction, human factors, and cognitive psychology can be leveraged to develop studies 
that assess the impact of modeling and simulation technologies on how people assess and draw 
conclusions from complicated and ambiguous datasets.  There is an extensive literature on the 
design and evaluation of information visualization and visual analytics tools, two related fields that 
dovetail nicely with computational social modeling and simulation (which often entails rich and 
colorful representations of human dynamics).  These and other areas of literature that address 
human sensemaking and technology interactions can help technology developers provide valuable 
toolsets that demonstrably improve human understandings of complicated problem spaces.  
 
 
RECOMMENDATION FIVE:  Support interdisciplinary exchanges that 
enable computational social science researchers, developers, adopters, 
proponents, users, and stakeholders to learn how other fields analyze and 
evaluate models and simulations.   
 
While we recognize that there are significant differences between the physical and the social 
sciences, we continue to assert that other fields’ experiences with developing, deploying, interpreting 
and applying modeling and simulation technologies can help organizations understand how to 
develop models, interpret their outputs, combine simulation outputs with other forms of 
information, and assess the limitations of modeling and simulation technologies in decision-making.  
Models are not just tools for analysis; they are artifacts that require analysis if we are to understand 
how they function, how we can use them responsibly, and what their limitations are.   
 
 

5. Conclusion 
Computational social science models and simulations are hybrid, interdisciplinary technologies that 
bring computational methodologies to the study of social, cultural, and behavioral phenomena.  
Computational modeling and simulation methodologies are well-established in many other areas of 
science; their adoption among social scientists is a relatively new phenomenon. Many social science 
researchers are excited about computational modeling because it offers a range of techniques for 
exploring social, cultural, and behavioral dynamics that are difficult to systematically observe and 
document in the real world.   Some of the most creative, promising research projects employ 
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modeling as part of a multi-method suite that includes real world observation and more traditional 
qualitative and quantitative research techniques.  However, the very nature of the dynamics under 
consideration – geographically distributed, taking place over multiple time scales, involving human 
cognitive processing and intentionality – presents significant challenges for empirical data collection 
– hence the attraction of computational techniques.  
 
Similar difficulties confront decision makers charged with analyzing and developing strategies for 
effecting outcomes in complex social, political, and cultural spaces. While U.S. government agencies 
have learned a tremendous amount about the national security challenges that face the country in the 
post 9/11 era, they are also still learning how to ask the right questions, and information and data 
about critical processes and events remain sparse and ambiguous.  Decision-makers in places like the 
U.S. Department of Defense and the Intelligence Community are typically working in environments 
where timelines are tight, resources limited, outcomes uncertain, the organizational politics 
complicated, and consequences high. Just as researchers look to computational modeling and 
simulation to generate and explore ideas about the origins and evolution of social, cultural, and 
behavioral dynamics, so too are decision makers seeking technologies that can provide insight into 
these complex domains.   
 
However, it is critical to remember that the use of modeling and simulation for research purposes is 
a different project than the use of modeling and simulation technologies for decision-making.  In a 
research environment, errors in data collection, modeling, simulation, analysis and interpretation can 
undermine the validity of research findings.  In government decision-making environments, the 
same errors may have significant, even existential consequences, particularly when kinetics are 
involved.   Modeling and simulation methodologies are novel, dynamic, exciting, and attention-
grabbing.  However, they are not magical: they are analytical methodologies, prone to a range of 
errors and problems that are still not well understood. Decision and policy-makers would be wise to 
broaden investments beyond just models themselves, to encompass the complex challenges of 
developing, deploying, and evaluating computational technologies as sensemaking tools for human 
beings working in high-consequence decision environments.  
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Introduction 
 

The sub-title of this paper, “Why Models Don’t Forecast,” has a deceptively simple answer:  

Models don’t forecast because people forecast. Yet this statement has significant implications for 

computational social modeling and simulation in national security decision-making. Specifically, it 

points to the need for robust approaches to the problem of how people and organizations develop, 

deploy and use computational modeling and simulation technologies.  

In the next twenty or so pages, we argue that the challenge of evaluating computational 

social modeling and simulation technologies extends far beyond verification and validation, and 

should include the relationship between a simulation technology and the people and organizations 

using it.  This challenge of evaluation is not just one of usability and usefulness for technologies, but 

extends to the assessment of how new modeling and simulation technologies shape human and 

organizational judgment.   The robust and systematic evaluation of organizational decision-making 

processes, and the role of computational modeling and simulation technologies therein, is a critical 

problem for the organizations who promote, fund, develop, and seek to use computational social 

science tools, methods, and techniques in high-consequence decision-making. 

 

Computational Social Science in the Post 9/11 World 
 

Computational social science is a diverse, interdisciplinary field of study whose practitioners 

include (but are not limited to) computer scientists, physicists, engineers, anthropologists, 

sociologists, physicists, and psychologists. Computational social modeling and simulation has 

lineages in computer science, mathematics, game theory, sociology, anthropology, artificial 

intelligence and psychology, dating back to the 1950s.  However, the application of computational 

simulation to social phenomena exploded in the 1990s, due to a number of intellectual, social and 

technological trends. These included the popularization of complexity studies [1, 2]; the rapid spread 
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of personal computing throughout multiple facets of work and social life; the rise of electronic 

communications technologies, including the Internet, email, and cellular telephony [3-5];  the 

subsequent explosion of interest in social networks [6-10], and the development of object-oriented 

programming. Together, these generated new sources of data about social phenomena, 

democratized computational simulation for researchers, and opened the door for a creative 

explosion in modeling methodologies and techniques [11, 12].  

Researchers in a range of fields see tremendous promise for computational social modeling 

and simulation as a technology for producing knowledge about human behavior and society.  

Modeling usefully supports development and refinement of hypothesized causal relationships across 

social systems, in ways that are difficult to achieve in the real world [13].  For example, agent models 

allow researchers to develop artificial societies in which “social scientists can observe emergent 

behaviors in terms of complex dynamic social interaction patterns among autonomous agents that 

represent real-world entities” [14]. Moreover, researchers can and do use simulated data instead of, 

or in addition to, real-world data [15]. Researchers in a range of fields are using these new modeling 

techniques to explore phenomena that are difficult to study in the real world because of ethical, 

temporal or geographical constraints; and to implement conceptual models or theoretical 

abstractions and simulate outcomes using the computer as a kind of “in silico” laboratory [16, 17]. 

Perhaps not surprisingly, a kind of revolutionary excitement and anticipation permeates 

much of the interdisciplinary literature on computational social science [18-20]. For example, David 

Levin, professor of public policy at Harvard’s Kennedy School recently argued that, “social science 

will/should undergo a transformation over the next generation, driven by the availability of new data 

sources, as well as the computational power to analyze those data.” 8  Many computational social 

scientists believe that we are on the brink of a computationally-driven paradigm shift that will 

                                                 
8 http://www.iq.harvard.edu/blog/netgov/2009/02/paper_in_science_tomorrow_on_c.html 
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change social science permanently [17-20].   For example, political economist Joshua Epstein has 

argued that agent-based modeling and complexity thinking are driving a broader conceptual shift to 

an explanatory or generative social science in which the ability to computationally generate social 

phenomena becomes a standard for evaluating truth claims [17, 21].  

A number of practitioners in computational social science not only see a promising future 

for computationally-enabled social research, but also believe that policy and decision makers would 

benefit from using computational modeling and simulation technologies to understand the 

complicated social, political, and economic events, and perhaps support the formation of more 

effective policies.  For example, in the wake of the recent financial crisis, physicist J. Doyne Farmer 

and economist Duncan Foley argued in Nature that econometric and general equilibrium models are 

inadequate for understanding our complicated economic system; that agent-based models can help 

decision makers formulate better financial policies; and that an ambitious goal would be to create 

“agent-based economic model capable of making useful forecasts of the real economy” ([22]: 686).   

Similarly, Joshua Epstein opined that policy and decision makers would benefit from using agent-

based modeling techniques to understand the dynamics of pandemic flu and make appropriate 

interventions [23].  

 This brings us to the issue of computational social science in national security policy and 

decision-making. It is worth noting that as the Cold War was coming to an end in the late 1980s and 

early 1990s, computational social science was experiencing explosive growth. This confluence 

perhaps explains why so many decision makers in federal departments and agencies are looking to 

computational social science to meet some of these new technological needs.  In particular, the 9/11 

attacks mark an important turning point in the relationship between the computational social science 

community and national security decision makers.  The reader may recall how several observers 

working with open-source information (i.e., newspapers and Internet) developed retrospective (and 
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here we emphasize the word retrospective, since so much of the national security discussion in this 

regard is focused on forecasting) social network analyses that very clearly “connected the dots” 

among the attackers [24]. One highly publicized example came from organizational consultant Vladis 

Krebs, who spent weeks combing through newspapers to find information about the hijackers, 

piecing together a sociogram that mapped relationships among the participants.  Krebs argued that 

the Qa’ida network was optimally structured to address competing demands of secrecy and 

operational efficiency; and pointed out that social network might be useful as a diagnostic tool to 

identify and interdict criminal activities.  Soon after, Krebs was asked to brief intelligence experts on 

the analysis and detection of covert networks [25-27].  

 Of course, the idea that analysts should have been able to forecast the 9/11 events using signs 

that are retrospectively obvious is a case of hindsight bias [28, 29].  Moreover, the government’s 

failure to interdict the 9/11 plot before the attacks involved multiple failures beyond simply 

connecting the proverbial dots, with or without a sociogram [30]. Nevertheless, analyses like Krebs’ 

drew both popular and government attention to the idea that arcane research areas like graph theory, 

social network analysis, and agent-based modeling might be predictive, at a time when terrorism 

research was undergoing “explosive growth” as measured by publications, conferences, research 

centers, electronic databases, and funding channels [31].  Over the past decade, a number of 

computational social scientists have argued that modeling and simulation techniques are uniquely 

suited to understanding the dynamics of emerging threats, at a time when national security decision 

makers are urgently looking for new frameworks, data sources and technologies for making sense of 

the post 9/11 world [32-35]. Indeed, within the computational social science literature, there is a 

significant sub-category of post 9/11 academic and policy writing that examines how computational 

social modeling and simulation, particularly agent-based simulations in combination with social 

network analysis techniques, might enhance understanding of a wide range of national security 

 53 



 

problems, including state stability, insurgency warfare, bioterrorism, flu pandemics, and terrorist 

network detection (see [25, 26, 32-63]; also [27, 64-66]).   

 

From Research to Decision-making 
 

With this confluence, it is not surprising that agencies like the U.S. Department of Defense 

have made substantial dollar investments in social science, including computational modeling and 

simulation for understanding human social, behavioral and cultural patterns [67].  National security 

decision makers, including those in the Department of Defense, can highlight a number of ways in 

which they would like to use computational social science techniques, including training simulations, 

characterization of adversary networks and situational awareness.  Among these, the ability to 

forecast is an implicit goal of many projects (see for example discussion on page 25 in [68]). The 

expectation is that social science-based modeling and simulation tools can be used to forecast future 

social, political, and cultural trends and events; and that these forecasts will improve decision-

making.    

Computational modeling and simulation technologies have played an important role in a 

wide range of human knowledge activities, from academic research to organizational decision-

making.   The utility of these technologies has been demonstrated over several decades of 

development and deployment in multiple fields, from weather forecasting to experimental physics to 

finance. However, it is important to remember that computational modeling and simulation tools 

are ultimately human artifacts, and like all human artifacts they come with very real limitations.   

How we recognize and deal with these limitations depends very heavily on the context in which we 

are using models and simulations. After all, models and simulations have different lifecycles in 

scientific research contexts than they do in decision-making contexts.  Generally speaking, 

researchers use computational modeling and simulation to support knowledge producing activities: 
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to refine conceptual models, examine parameter spaces, identify data needs and possible sources to 

address knowledge gaps.  Moreover, models and simulations that are embedded in ongoing cycles of 

scientific knowledge production benefit from continuous comparisons between empirical 

data/observations and model outputs, as well as peer review.   

Unlike researchers, decision makers often look to modeling and simulation technologies to 

help refine courses of action that may have very high public consequences.  They are frequently 

dealing with problems characterized by high levels of epistemic uncertainty – i.e., lack of knowledge 

and data – and are addressing problems for which scientific and expert consensus may be neither 

mature nor fixed [69].   For decision makers, modeling and simulation technologies may be seen as 

useful “what if” tools to help them evolve their understanding of a problem space [70, 71].  

However, decision makers are probably not focused on improving the model’s correctness, or 

assessing how well it corresponds to a real-world phenomenon of interest. Decision makers tend to 

be more focused on identifying courses of action and moving forward, and in doing so, they 

typically face legal, economic, and political motivations and constraints that researchers do not.  In 

the context of the national security community, decision makers may be addressing problems that 

involve high resource commitments or even human lives.   

The contextual difference between research environments and decision-making 

environments is a critical one that carries significant implications for the design, implementation, 

and evaluation of computational models and simulations. The decision to employ computational 

modeling and simulation technologies in high-consequence decision-making implies a responsibility 

for evaluation: not just of the models themselves, but assessments of how these technologies fit into, 

shape, and affect outcomes in the real world.  Higher consequence decision spaces require 

proportionally greater attention to assessing the quality of the data, methods, and technologies being 
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brought to bear on the analysis; as well as the analytic and decision-making processes that rely on 

these technologies.  

In this regard, we briefly highlight three areas of evaluation that we believe require careful 

attention for computational social science.  These include verification and validation (V&V), human-

computer interaction, and forecasting as an organizational (not computational) challenge.   

 
Verification and Validation 
 

Verification and validation (V&V) are processes that assess modeling and simulation 

technologies for internal correctness (verification), and external correspondence to real-world 

phenomena of interest (validation). There is an enormous body of literature dating back to the 1970s 

that addresses methods, techniques, tools, and challenges for V&V [72, 73].  Most of this research 

has been done in fields like computational engineering, artificial intelligence, and operations 

research. However, in the computational social science community, there is an emerging body of 

literature addressing the challenges of verifying and validating computational social science models 

and simulations [14, 74-83]; see also [50, 84].   

We will not review the voluminous V&V literature here, except to make two points: firstly, 

computational social modeling and simulation raises specific V&V issues that are probably unique to 

the social sciences.  Secondly, despite the marked epistemic differences between computational 

social science and computational physics, engineering, or even operations research, the broader 

V&V literature does have lessons for organizations investing in predictive computational social 

science.  

Verification and validation in computational physics and engineering is both similar to and 

divergent from computational social science. For example, in computational science and 

engineering, determining whether a software tool is accurately solving a set of partial differential 

equations (verification) is a logically internal process; when large systems of partial differential 
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equations are typically in play, “correct” in the context of verification means a “mathematically 

accurate solution.”  It says nothing about whether or not that solution adequately captures the 

behavior of a real world phenomenon.  As such, verification requires no engagement with the world 

of observation. Similarly, in the context of agent-based modeling, assessing whether or not an agent-

based model accurately executes a conceptual model requires the ability to rigorously assess the 

mathematics, algorithms, and software engineering of the system.  That may require the 

development of agent-specific verification techniques, but does not require engagement with the 

external world.  

On the other hand, determining whether a partial differential equation is correctly 

representing a real world phenomenon of interest  - that is, performing validation – does require 

engagement with the external world. Correctness in the context of validation must be centered on 

observations derived from valid sources; i.e., systematic observational data or controlled 

experiments. Along those lines, assessing whether an agent-based model is built on correct 

requirements, implementing an appropriate conceptual model, and producing outputs that 

correspond to the real world, requires comparison with observation.  

How we perform a meaningful and objective comparison among the conceptual model, the 

simulation, and the real world, is a critical challenge in the computational social sciences.   For one 

thing, it is difficult to escape the problem of explanatory/theoretical contingency and plurality in the 

social sciences, in which cross-disciplinary challenges to explanatory frameworks are common, and 

demonstrable certainty is rare. Although some might see quantitative modeling as a way of 

introducing rigor into the social sciences, it is not clear that modeling helps researchers get around 

this problem.  In the realm of the physical sciences, models derive from stable epistemology, rather 

than vice versa.  In the social sciences, there are basic debates about the role of theory as a 

descriptive, explanatory, or causal framework; and whether or not a nomothetic enterprise is even 
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possible (i.e., the generation of broadly applicable, generalizable explanatory theories for human 

behavior).  As anthropologist Jessica Glicken Turnley points out, evaluation techniques that rest on 

a logical positivist philosophy that a) assumes the existence of objective data, and that b) presumes 

stable relationships between data and theory, are a poor fit for the social sciences, where multiple 

frameworks can be evoked with equal credibility, depending on one’s discipline, to explain similar 

phenomena [75]. Indeed, evoking computational modeling and simulation to assert epistemological 

rigor is highly problematic in areas where theoretical consensus is lacking.   In particular, 

confirmation bias is a well-recognized form of cognitive bias in which people subconsciously put 

greater emphasis on information that is consonant with their reasoning, while simultaneously 

discounting disconfirming evidence.  Insofar as computational models and simulations reify and 

help us visualize our conceptual models, they can make those models seem more credible than they 

perhaps are – as critics of computational social modeling projects have pointed out (see for example 

Andrew Vayda’s discussion of Stephen Lansing’s work in [85]).  

Issues with theory and conceptual validity are intertwined with the problem of data validity, a 

second challenge for verification and validation in computational social science. In computational 

physics and engineering, validation depends on two things: identifying a validation referent, or a 

known point of estimated “truth” for comparison that enables one to evaluate the validation 

correctness or accuracy of the model vis-à-vis reality; and the ability to generate valid observational 

data around that referent.  In the social sciences, this requirement for known points of truth to act as 

referents, and the associated need for high-quality empirical validation data, are serious challenges.  

In this regard, data will probably be a major, ongoing problem for the verification and 

validation of computational social models and simulations, since it is impossible to assess the value 

of a model or simulation without systematic ways to tie the model to observed reality. For one thing, 

some forms of social knowledge simply resist quantification.  At a deeper level, the issue of how 
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evaluate the “objectivity” of data in the social sciences is a long-standing epistemological debate. 

This is because social scientists are embedded in the very social matrices they are studying; we 

cannot speed up or slow down society, or miniaturize it in relation to our senses, to observe the 

manifold and multilevel dynamics that interest us.  As Lucy Resnyansky points out, “Data that are 

used for understanding the threat of political violence, extremism, instability and conflict are 

essentially different from what is considered to be data in natural sciences.  The former kinds of data 

have a representational nature and are sociocultural constructs rather than results of objective 

observation and measuring” ([47]: 42).  Lastly, empirical data that are used to develop a model 

cannot be used to rigorously validate it, which means that validation requires investment in the 

systematic collection of additional validation quality data.  This can be challenging if the 

phenomenon of interest involves the dissemination of an idea through a large population, or 

assessing the causes of intergroup violence in a particular region of the world, in which case data 

collection could easily span many countries and several decades.  

This raises a second point: the computational physics and engineering literature that deals 

with verification and validation is relevant and important for computational social science models 

and simulations intended for application in real-world decision-making contexts. This literature 

emphasizes that the main benefit of V&V is not (perhaps counter-intuitively) increased focus on the 

model, but the contextual issue of how the model will be used, and therefore how the organization 

and its members identify what decisions they are responsible for making, and negotiate the levels of 

risk they are willing to accept. This is because verification and validation emphasize whether or not a 

software application is credible for an intended area of use.  These discussions force clarification about 

the decisions, tradeoffs, and risks across stakeholder communities, and what is required for a model 

to be considered credible and appropriate in relation to a decision. In this regard, we have come to 

 59 



 

view verification and validation as a form of sensemaking through which stakeholders in a decision 

space negotiate the benefits and limitations of a modeling and simulation technology.  

 
Forecasting, Simulation, and Decision-making  
 

A great deal of the literature on computational social science in national security decision-

making focuses on challenges of theory, methods and data to support computational modeling and 

simulation for a range of problems, from training to forecasting.  What this focus misses is that 

forecasting is not a technological problem, and that no model or simulation ever makes a prediction 

or develops a forecast.  Models and simulations generate information. People make predictions and 

develop forecasts.   Whether or not a simulation is actually “predictive” of something is always 

human judgment, not a technological one, and humans are always in the loop.  

In this regard, we call the reader’s attention to an extensive body of interdisciplinary 

scholarship, much of it rooted in economics, business, psychology and management, that focuses on 

the topic of forecasting and decision-making in organizations (see especially [86-90]).  This literature 

highlights a larger family of forecasting approaches that include quantitative (statistical), qualitative 

(judgmental), and integrated quantitative-qualitative approaches to developing forecasts.   This 

literature treats modeling and simulation tools technological inputs to forecasting techniques, 

methods and principles; and emphasizes that tools are only as good as the processes through which 

they are created and used.  In particular, Armstrong identifies eleven different families of forecasting 

techniques [86-88], and suggests principles for a robust multi-stage forecasting process.  Forecasts, 

he argues, include multiple stages of activity, including formulating a problem, obtaining data, 

selecting and implementing forecasting methods, evaluating forecasting methods, using forecasts in 

planning and decision-making, and auditing forecasting procedures to ensure that appropriate 

principles have been applied [91]; see also [90, 92].   Armstrong’s principles point to a kind of 

“verification and validation” for forecasting beyond the correctness of a model and beg the question 
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of whether or not a model is actually the best analytic methodology for a particular decision space.  

Moreover, his work highlights forecasting as an organizational problem, not a technological one; and 

it is a difficult challenge because planning and decision-making activities tend to be highly 

distributed within and across stakeholder groups.  

No area of research makes this point more thoroughly than weather forecasting, which has 

been studied extensively by psychologists, decision theorists, and economists for six decades as part 

of an ongoing effort to assess and increase the political, social, and economic value of weather 

forecasts.   Weather forecasting is unique for several reasons:  first, the United States National 

Weather Service issues many tens of millions of forecasts a year [93]. Second, weather forecasts are 

highly public, with federal, state and local agencies and individual citizens incorporating weather and 

climate forecasts into a wide array of daily activities, from purchasing road-clearing equipment to 

planning weddings.  Third, weather forecasters get regular feedback not only on the correctness of 

their predictions, but on the value of the forecast information they provide.  As a result, weather 

forecasting has been a subject of intense interdisciplinary study for many decades, because weather 

forecasting is one of the few areas where it is possible not only to evaluate the correctness of a 

forecast and to suggest improvements, but also to document how forecasts are incorporated into 

decision-making processes. As Pielke suggests, weather forecasting “provides some lessons about 

how we think about prediction in general,” not just weather forecasting specifically ([93]: 67). 

A great deal of this literature is relevant to computational social models and simulations 

being used for predictive purposes.  The weather forecasting literature treats modeling and 

simulation technologies as only one element of a much larger “process in which forecasters 

assimilate information from a variety of sources and formulate judgments on the basis of this 

information” [94].  Moreover, forecasting is not just a problem for meteorologists, but involves a 

complex ensemble of people, organizations, tools, data sources and activities through which 
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forecasts are developed, disseminated, acted upon, reviewed and evaluated – what Hooke and Pielke 

call the “symphony orchestra” of the weather forecasting system [95].    The forecasting orchestra 

includes three principal activities:  forecasting, communication, and incorporation, all of which are 

working in parallel at any particular point, and each of which can be subjected to rigorous 

evaluation.  Ensuring that this orchestra provides the best public service possible depends on 

rigorous evaluation of how well each of these activities is performed.   

The weather forecasting community not only works to improve the performance of its 

modeling and simulation tools, but also the skill of the forecasters who develop and disseminate 

forecasting products.   How to evaluate and improve forecasting skill, communicate forecasts, and 

increase the value of forecasts to decision makers, have been research challenges for meteorologists, 

psychologists, statisticians, economists and decision theorists since at least the 1960s [94, 96-99]. 

Forecasting is a process of continuous learning that demands prompt, clear, and unambiguous 

feedback, in a system that rewards forecasters for accuracy ([100]: 543); forecasters need feedback to 

identify errors and assess cause [97].  Lacking prompt feedback, intermediate-term feedback can help 

forecasters get a better sense of how well they are doing; but only when the forecaster’s predictions 

are clearly and precisely recorded, along with the inputs and assumptions or external considerations 

that went into the forecast. Systematic, regular, comparative evaluation provides more than 

accountability; it improves forecaster skill. 

At the same time, forecasting skill depends not only on the forecaster’s cognitive abilities but 

on “the environment about which forecasts are made, the information system that brings data about 

the environment to the forecaster, and the cognitive system of the forecaster” ([101]: 579; see also 

[102]).    Thomas Stewart has argued that the forecasting challenge is best understood as an example 

of the Brunswik lens model, which relates the observed event to the forecast through a lens of 

“cues” or information items that people use to make the forecast.  The quality of a forecast depends 
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not only on the ecological validity of the cues – that is, how the cues are related to the phenomenon 

being forecasted and what those cues indicate about the phenomenon – but also the ability of the 

forecaster to use those cues properly in assessing the event of interest; i.e., whether or not the 

forecaster is using the right information, and if she is using that information correctly.  

As complex as this system is, when all these elements come together properly, weather 

forecasters are tremendously accurate and reliable in their predictions.  However, good forecasting 

also involves packaging meteorological expert judgment for non-meteorologist consumers.  One 

issue of perennial concern of the forecasting community is the communication of uncertainty in 

weather forecasts.  Forecasting is an inherently uncertain process because of the inexactness of 

weather science and the many sources of error that can throw off accuracy, including model 

uncertainty, issues with data, inherent stochasticity, and forecaster judgment. Accordingly, the 

communication of uncertainty is a major element in whether or not people can use forecasts. In 

1971, Murphy and Winkler found that even other scientists had trouble explaining what 

meteorologists meant by “a 40% chance of rain” [94, 98].  More recent research in human judgment 

and decision-making indicates that even today, seemingly unambiguous probability statements are 

prone to misinterpretation:  As a simple example, Gerd Gigerenzer and colleagues found that 

populations in different metropolises interpreted the seemingly unambiguous statement “a 30% 

chance of rain” in different ways, depending assumptions about the reference class to which the 

event was oriented [103].  Not surprisingly, the National Oceanic and Atmospheric Administration 

(NOAA) continues to invest resources in the development of techniques for communicating 

uncertainty across its stakeholder communities. 

Uncertainty is likely to be a major research challenge for forecasts of social phenomena.  

Research should emphasize methods for quantifying, bounding, aggregating, and propagating 

uncertainty through both models and the forecasts derived from models.  Indeed, a National 
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Research Council report on dynamic social network analysis identified uncertainty as one of the key 

under-researched areas in quantitative and computational social science [50].  This research is critical 

for developing a decision-oriented computational social science, but it is probably not sufficient.  If 

NOAA’s experience in this regard is any indication, forecasts of social processes and phenomena 

will have to deal not only with multiple sources of uncertainty, but also the challenge of representing 

and communicating uncertainty to consumers with varying levels of skill in interpreting quantitative, 

graphical, and/or qualitative expressions of uncertainty.  

Lastly, it is important to emphasize that forecasting and decision-making are two different 

activities.  That improvements in decision-making do not necessarily depend on improvements in 

forecasting is illustrated in case studies examining how forecasting failures actually lead to better 

public policy- and decision-making (see for example [104])   All decisions involve uncertainty, both 

stochastic and epistemic. Putting too much emphasis on forecasting as a means of improving 

planning can lead decision makers to focus on the correctness of the forecast at the expense of the 

planning process.  Forecasts are helpful as long as they do not divert attention from potentially more 

robust ways of dealing with uncertainty, such as flexible resource allocation practices or hedging 

strategies [105].  

 
 
Users, Transparency, and Responsibility 
 

Verification and validation techniques assess the goodness of a model/simulation from an 

internal (verification) and external (validation) perspective.  In the context of high-consequence 

decision-making, such as that performed in military and intelligence contexts, there is another 

dimension that requires assessment.  This dimension is the relationship between the 

model/simulation technology and the person or people using the technology; i.e., the relationship 

between the human and the computer.  
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All software projects have various stakeholders, including developers, funders, and end 

users.  In the software engineering community, it is generally understood that getting end users 

involved in the design and development of the tools they will use is critical if the software is to be 

usable, useful and relevant to real-world problems.  Even so, end users tend to be the silent 

stakeholder in modeling and simulation projects, because so many begin, progress, and end without 

much consideration of who will use the software or what they will do with it. We think of this as the 

“over-the-fence” model of software development. Such over-the-fence software projects are quite 

common in the national security community.  

The over-the-fence model of software development may be particularly poor for 

computational social modeling and simulation efforts.  This is because computational science 

projects tend to be complicated interdisciplinary efforts that bring together an array of subject 

matter experts [48].  Very sophisticated models can require deep expertise in a number of areas, 

from computer hardware to uncertainty in social science data. The process of developing the model 

is a critical forum for knowledge exchange because model development activities afford developers 

the chance to learn from each other and to develop shared understandings about the technology 

under construction [106, 107]. Because of this, we believe that a key challenge for the applied 

computational social science community is developing relationships with end-users that facilitate 

transition of modeling and simulation technologies into usable, useful, and adoptable systems that 

support analytical reasoning. 

At a deeper level, this raises the question of how much of this experiential or contextual 

knowledge is required to effectively use modeling and simulation technology. Because modeling and 

simulation technologies can embody so many layers of expertise, it can be difficult for end users 

who are not subject matter experts to understand what the model is doing, or how it performs its 

functions.  Sometimes, this is not an issue because the modeling and simulation technology is not 
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going to be used outside the domain in which it was developed. It might be a tool that a research or 

analysis team develops for itself; in this case, the developers are the end users for the technology, 

and because of that, they understand (hopefully) the model’s uses, limitations, and biases. 

Alternatively, the tool may not be traveling very far outside the domain of its creation.  For example, 

a sociologist might develop an agent-based social network modeling tool, and might post it on her 

website so that other sociologists trained in these techniques can apply it to their data.   In this case, 

the domain of use is epistemically adjacent to the domain of development, so that new users can 

credibly bring their domain knowledge to bear on the software artifact they are using.    

However, when modeling and simulation technologies are going to be transferred across 

epistemic domains, the question of how and if non-subject matter experts can engage the technology 

as a tool becomes more problematic.  Such epistemic distance raises ethical issues for applied 

computational modeling and simulation projects, since users who do not understand the application 

space, benefits and/or limitations of a modeling and simulation tool are unlikely to use it well.  

Along these lines, Fleischmann and Wallace have argued that ethically responsible modeling implies 

three elements: a commitment to develop models that a) are faithful to reality, b) reflect the values 

of stakeholders, and c) are maximally transparent so that users and decision makers can employ the 

model appropriately.  This latter property, transparency, is  “the capacity of a model to be clearly 

understood by all stakeholders, especially users of the model” ([108]: 131). Developing processes to 

deal with epistemic gaps will be an important aspect of tool development and deployment in the 

national security community.  This is an organizational problem, not a technological one, and 

addressing it requires careful planning and stakeholder negotiations.  

 
 
Conclusion 
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As the computational social science community continues to evolve its techniques and 

approaches, its practitioners may play an important role in shaping our rapidly evolving national 

security community.  In a reflexive way, to the extent that the computational social science 

community attracts and leverages national security investments, national security topics like 

terrorism and insurgency warfare are likely to provide major focus areas for the evolution of the 

field’s techniques and specialty areas.  In moving computational modeling and simulation 

technologies out of the realm of research and into the realm of policy and decision-making, we 

should perhaps consider what is required to develop a realistic, robust understanding of what it 

means to use models and simulations as decision support tools.   We want to reemphasize a point 

we made earlier: there is no such thing as a computational prediction.  Computational models and 

simulations provide outputs, but predictions are a form of human judgments.  Computational 

models and simulations are created by human beings, and like everything we create, our models and 

simulations reflect (even reify) our state of knowledge at a particular point in time.  Focusing our 

attention on the limitations of models and simulations as tools for human users, and investing 

resources in assessing what those limitations imply for real-world decision-making, can help us build 

a stronger understanding of how, where, when, and why computational models and simulations can 

be useful to people working in fraught, high-consequence decision-making contexts.  

 

 
WORKS CITED 

 
[1] J. Gleick, Chaos: Making a New Science. New York: Penguin Books, 1987. 
[2] S. Wolfram, A New Kind of Science. Champaign, IL: Wolfram Media, 2002. 
[3] N. Eagle, "Mobile Phones as Social Sensors," in Oxford Handbook of Emergent Technologies in 

Social Research, S. N. Hesse-Biber, Ed. New York: Oxford University Press, 2010. 
[4] N. Eagle, A. Pentland, and D. Lazer, "Inferring Friendship Network Structure by Using 

Mobile Phone Data," Proceedings of the National Academy of Sciences, vol. 106, pp. 15274-15278, 
2009. 

[5] N. Eagle and A. S. Pentland, "Reality Mining: Sensing Complex Social Systems," Personal 
Ubiquitous Computing, vol. 10, pp. 255-268, 2004. 

 67 



 

[6] D. Watts, "An Experimental Study of Search in Global Social Networks," Science, vol. 301, 
pp. 827-829, 2003. 

[7] D. Watts, Six Degrees: The Science of a Connected Age. New York: Norton, 2003. 
[8] D. Watts, "The 'New' Science of Networks," Annual Review of Sociology, vol. 30, pp. 243-270, 

2004. 
[9] D. Watts and S. Strogatz, "Collective dynamics of small world networks," Nature, vol. 393, 

pp. 409-10, 4 June 1998. 
[10] A.-L. Barabási, Linked: How Everything is Connected to Everything Else and What it Means. New 

York: Plume, 2003. 
[11] C. Macal and M. J. North, "Tutorial on Agent-Base Modeling and Simulation, Part 2:  How 

to Model with Agents," in Proceedings of the 2006 Winter Simulation Conference, L. F. Perrone, F. 
P. Wieland, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, Eds. Monterey: IEEE, 2006. 

[12] D. White, "Networks and Complexity," Complexity, vol. 8, pp. 14-15, 2003. 
[13] N. Gilbert and P. Terna, "How to Build and use Agent-Based Models in Social Science" 

1999.  Retrieved June 30 2010 from web.econ.unito.it/terna/deposito/gil_ter.pdf 
[14] L. Yilmaz, "Validation and Verification of Social Processes within Agent-Based 

Computational Organizational Models," Computational and Mathematical Organization Theory, 
vol. 12, pp. 283-312, 2006. 

[15] Defense Science Board, "Report of the Defense Science Board Task Force on 
Understanding Human Dynamics," Office of the Undersecretary of Defense for Acquisition, 
Technology and Logistics, Washington, DC 2009. 

[16] L. Tesfatsion, "Agent-based Computational Economics: Growing Economies from the 
Bottom Up." Artificial Life 8(1): 55-82.  

[17] J. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton, NJ: 
Princeton University Press, 2006. 

 [19] T. Koehler, "Putting Social Sciences Together Again: An Introduction to the Volume," in 
Dynamics in Human and Primate Societies, T. Koehler and G. Gumerman, Eds. New York: 
Oxford University Press, 2000. 

[20] P. Ormerod, The Death of Economics. New York: Wiley, 1995. 
[21] J. M. Epstein, "Agent-Based Computational Models and Generative Social Science," 

Complexity. 4(5): 41-60, 1999.  
[22] J. D. Farmer and D. Foley, "The Economy Needs Agent-Based Modeling," Nature, vol. 460, 

p. 685, 2009. 
[23] J. Epstein, "Modeling to Contain Pandemics," Nature, vol. 460, p. 687, 2009. 
[24] S. Ressler, "Social Network Analysis as an Approach to Combat Terrorism: Past, Present 

and Future Research," Homeland Security Affairs, vol. 2, 2006. 
[25] V. Krebs, "Uncloaking Terrorist Networks," in First Monday, vol. 7(4), 2002, retrieved June 

30, 2010 from  
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/941/863 

[26] P. R. Keefe, "Can Network Theory Thwart Terrorists?," in New York Times. 12 March 2006, 
retrieved 31 July 2010 from 
http://www.nytimes.com/2006/03/12/magazine/312wwln_essay.html 

[27] J. Bohannon, "Counterterrorism's New Tool: Metanetwork Analysis," Science, vol. 325, pp. 
409-411, 2009. 

[28] JASON, "Rare Events," MITRE Corporation, McLean, VA 2009. 
[29] R. Heuer, "Psychology of Intelligence Analysis,"  Washington, DC: Central Intelligence 

Agency, 1999. 

 68 



 

[30] National Commission on Terrorist Attacks Against the United States, The 9/11 Commission 
Report. Washington, DC: United States Government Printing Office, 2004. 

[31] E. Reid and H. Chen, "Mapping the Contemporary Terrorism Research Domain: Research, 
Publications, and Institutions Analysis," in IEEE International Conference on Intelligence and 
Security Informatics Atlanta, GA: Springer-Verlag, 2005. 

[32] B. G. Silverman, G. Bharathy, B. Nye, and R. J. Eidelseon, "Modeling Factions for "Effects 
Based Operations," Part I: Leaders and followers," Computational and Mathematical Organization 
Theory, vol. 13, pp. 379-406, 2007. 

[33] K. Carley, "Destabilizing Terrorist Networks," in Proceedings of the 8th International Command 
and Control Research and Technology Symposium, National Defense War College, Washington DC, 
2003. 

[34] K. Carley, D. Fridsma, E. Casman, N. Altman, C. J., B. Kaminsky, D. Nave, and A. Yahja, 
"BioWar: Scalable Multi-Agent Social and Epidemiological Simulation of  Bioterrorism 
Events," in NAACSOS Conference 2003, Pittsburgh, PA, 2004. 

[35] L. Kuznar, A. Astorino-Courtois, and S. Canna, "Assessing the Perception-to-Intent-to-
Action Dynamic," in Topical Strategic Multi-Layer Assessment (SMA), Multi-Agency/Multi-
Disciplinary White Papers in Support of Counter-Terrorism and Counter-WMD Washington, DC: 
United States Department of Defense, 2009. 

[36] S. Koschade, "A Social Network Analysis of Jemaah Islamiyah: The Applications to 
Counterterrorism and Intelligence," Studies in Conflict and Terrorism, vol. 29, pp. 589-606, 2006. 

[37] M. Dombroski, P. Fischbeck, and K. Carley, "Estimating the Shape of Covert Networks," in 
Proceedings of the 8th International Command and Control Research and Technology Symposium, 
National Defense War College, Washington DC, 2003. 

[38] J. C. Bohorquez, S. Gourley, A. R. Dixon, M. Spagat, and N. F. Johnson, "Common Ecology 
Quantifies Human Insurgency," Nature, vol. 462, pp. 911-914, 2009. 

[39] M. Lazaroff and D. Snowden, "Anticipatory Models for Counter-Terrorism," in Emergent 
Information Technologies and Enabling Policies for Counter-Terrorism, R. L. Popp and J. Yen, Eds. 
Hoboken, NJ: John Wiley and Sons, 2006, pp. 51-73. 

[40] R. L. Popp and J. Yen, Emergent Information Technologies and Enabling Policies for Counterterrorism. 
Hoboken, NJ: John Wiley and Sons, 2006. 

[41] G. Ackerman, A. Battacharjee, M. Klag, and J. Mitchell, "Literature Review of Existing 
Terrorist Behavior Modeling," Center for Nonproliferation Studies,  Monterey Institute of 
International Studies, Monterey, CA 2002. 

[42] H. Goldstein, "Modeling Terrorists: New Simulators Could Help intelligence Analysts Think 
Like the Enemy," IEEE Spectrum, pp. 26-35, 2006. 

[43] L. A. Kuznar and J. M. Lutz, "Risk Sensitivity and Terrorism," Political Studies, vol. 55, 2007. 
[44] E. P. Mackerrow, "Understanding Why: Dissecting Radical Islamic Terrorism with Agent-

Based Simulation," Los Alamos Science, pp. 184-191, 2003. 
[45] S. R. Corman, "Using Activity Focus Networks to Pressure Terrorist Organizations," 

Computational and Mathematical Organization Theory, vol. 12, pp. 35-49, 2006. 
[46] R. L. Popp, D. Allen, and C. Cioffi-Revilla, "Utilizing Information and Social Science 

Technology to Understand and Counter the Twenty-First Century Strategic Threat," in 
Emergent Information Technologies and Enabling Policies for Counter-Terrorism, R. L. Popp and J. 
Yen, Eds. Hoboken, NJ: IEEE/John Wiley and Sons, 2006. 

[47] L. Resnyansky, "The Internet and the Changing Nature of Intelligence," IEEE Technology and 
Society Magazine, vol. Spring 2009, pp. 41-48, 2009. 

[48] L. Resnyansky, "Social Modeling as an Interdisciplinary Research Practice," IEEE Intelligent 
Systems, vol. July/August 2008, pp. 20-27, 2008. 

 69 



 

[49] J. Epstein, "Modeling to Contain Pandemics " Nature, vol. 460, p. 687, 2009. 
[50] R. Breiger, K. Carley, and P. Pattison, "Dynamic Social Network Modeling and Analysis: 

Workshop Summary and Papers," Washington, DC: National Academies Press, 2003. 
[51] I. M. McCulloh, M. L. Webb, J. L. Graham, K. Carley, and D. B. Horn, "Change Detection 

in Social Networks," United States Army Research Institute for Behavioral and Social 
Sciences, Arlington, VA 2008. 

[52] P. V. Fellman and R. Wright, "Modeling Terrorist Networks: Complex Systems at the Mid-
Range," in Joint International Conference on Ethics, Complexity and Organizations London School of 
Economics, London, England: 
http://www.psych.lse.ac.uk/complexity/Conference/FellmanWright.pdf, 2007. 

[53] N. Choucri, D. Goldsmith, S. E. Madnick, D. Mistree, J. B. Morrison, and M. Siegel, "Using 
System Dynamics to Model and Better Understand State Stability," MIT Sloan Research Paper 
No 4661-07, vol. Available at SSRN: http://ssrn.com/abstract=1011230, 2007. 

[54] M. Genkin and A. Gutfraind, "How do Terrorist Cells Self-Assemble? Insights from an 
Agent-Based Model," Cornell University White Paper, vol. Available at SSRN: 
http://ssrn.com/abstract=1031521, 2007. 

[55] H. V. D. Parunak and J. J. Odell, "Representing Social Structures in UML," in Lecture Notes in 
Computer Science: Agent-Oriented Software Engineering II: Springer Berlin/Heidelberg, 2002, pp. 1-
16. 

[56] E. Elliott and L. D. Kiel, "A Complex Systems Approach for Developing Public Policy 
Towards Terrorism: An Agent-Based Approach," Chaos, Solitons and Fractals, vol. 20, pp. 63-
68, 2003. 

[57] F.-Y. Wang, K. M. Carley, D. Zeng, and W. Mao, "Social Computing: From Social 
Informatics to Social Intelligence," IEEE Intelligent Systems, vol. 22, pp. 79-93, 2007. 

[58] L. A. Kuznar and W. Frederick, "Simulating the Effect of Nepotism on Political Risk Taking 
and Social Unrest," Computational and Mathematical Organization Science, vol. 13, pp. 29-37, 
2006. 

[59] B. G. Silverman, G. Bharathy, B. Nye, and T. Smith, "Modeling Factions for "Effects Based 
Operations," II: Behavioral Game Theory," Computational and Mathematical Organization Science, 
vol. 14, pp. 120-155, 2008. 

[60] K. Carley, "Destabilization of Covert Networks," Computational Mathematical and Organization 
Theory, vol. 12, pp. 51-66, 2006. 

[61] M. Tsvetovat and M. Latek, "Dynamics of Agent Organizations: Application to Modeling 
Irregular Warfare," Lecture Notes in Computer Science: Multi-Agent Based Simulation IX, vol. 5269, 
pp. 60-70, 2009. 

[62] N. Memon, J. D. Farley, D. L. Hicks, and T. Rosenorn, Mathematical Methods in 
Counterterrorism. Vienna: Springer, 2009. 

[63] I. M. Longini, M. E. Halloran, A. Nizam, Y. Yang, S. Xu, D. S. Burke, D. A. T. Cummings, 
and J. M. Epstein, "Containing a Large Bioterrorist Smallpox Attack: A Computer 
Simulation Approach," International Journal of Infectious Diseases vol. 11, pp. 98-108, 2007. 

[64] S. Weinberger, "Pentagon Turns to 'Softer' Sciences," Nature, vol. 464, p. 970, 2010. 
[65] N. Gilbert, "Modelers Claim Wars are Predictable," Nature, vol. 462, p. 836, 2009. 
[66] M. Sageman, Understanding Terror Networks. Philadelphia University of Pennsylvania Press, 

2004. 
[67] "Hearing Charter: Role of the Social and Behavioral Sciences in National Security," in US 

House of Representatives Committee on Science and Technology, Subcommittee on Research and Science 
Education and Committee on Armed Services, Subcommittee on Terrorism, Unconventional Threats, and 
Capabilities Washington, DC: United States Congress, 2008, p. 5. 

 70 

http://www.psych.lse.ac.uk/complexity/Conference/FellmanWright.pdf
http://ssrn.com/abstract=1011230
http://ssrn.com/abstract=1031521


 

[68] N. K. Hayden, "Dynamic Social Network Analysis: Present Roots and Future Fruits," 
Advanced Systems and Concepts Office, Defense Threat Reduction Agency, Ft. Belvoir, VA 
July 2009. 

[69] S. Jasanoff, "Contested Boundaries in Policy-Relevant Science," Social Studies of Science, vol. 
17, pp. 195-230, 1987. 

[70] S. Bankes, "Exploratory Modeling for Policy Analysis," Operations Research, vol. 41, pp. 435-
449, 1993. 

[71] S. Bankes, "Reasoning with Complex Models using Compound Computational Experiments 
and Derived Experimental Contexts," in CASOS 2002 Pittsburgh, PA: Carnegie Mellon 
University, 2002. 

[72] D. J. Aigner, "A Note on Verification of Computer Simulation Models," Management Science, 
vol. 18, pp. 615-619, July 1972 1972. 

[73] R. G. Sargent, "An Expository on Verification and Validation of Simulation Models," in  
Procedings of the 1985 Winter Simulation Conference, 1985, pp. 15-22. 

[74] N. K. Hayden, "Verification and Validation of Social Science Simulations: Some Thoughts 
for Consideration in National Security Applications," Defense Threat Reduction 
Agency/Advanced Systems and Concepts Office (DTRA/ASCO) 2007. 

[75] J. G. Turnley, "Validation Issues in Computational Social Simulation," Galisteo Consulting 
Group, 2004, p. 8. 

[76] R. Axtell, R. Axelrod, J. M. Epstein, and M. D. Cohen, "Aligning Simulation Models: A Case 
Study and Results," Computational and Mathematical Organization Theory, vol. 1, pp. 123-141, 
1996. 

[77] G. Fagiolo, P. Windrum, and A. Moneta, "Empirical Validation of Agent-Based Models: A 
Critical Survey," Laboratory of Economics and Management, Sant’Anna School of 
Advanced Studies, 2006, retrieved July 31 2010 from www.lem.sssup.it/WPLem/files/2006-
14.pdf 

[78] A. Yahja, "Simulation Validation for Societal Systems" CASOS Paper, Carnegie Mellon 
University, Pittsburgh, PA 2006, retrieved 31 July 2010 from 
www.casos.cs.cmu.edu/publications/papers/CMU-ISRI-06-119.pdf. 

[79] U. Wilenski and W. Rand, "Making models match: Replicating an agent-based model," 
Journal of Artificial Societies and Social Simulation, vol. 10 2007. 

[80] P. Windrum, G. Fagiolo, and A. Moneta, "Empirical Validation of Agent-Based Models: 
Alternatives and Prospects," Journal of Artificial Societies and Social Simulation vol. 10, 2007. 

[81] L. McNamara, T. G. Trucano, G. A. Backus, S. A. Mitchell, and A. Slepoy, "R&D For 
Computational Cognitive and Social Models: Foundations for Model Evaluation through 
Verification and Validation," Sandia National Laboratories, SAND2008-6453, Albuquerque, 
NM 2008. 

[82] S. Moss, "Alternative Approaches to the Empirical Validation of Agent-Based Models " 
JASSS, vol. 11, 2008. 

[83] K. M. Carley, "Validating Computational Models," Carnegie Mellon University 1996. 
[84] G. L. Zacharias, J. MacMillan, and S. B. Van Hemel, Behavioral Modeling and Simulation: From 

Individuals to Societies, Washington, DC: National Academies Press, 2007. 
[85] A. P. Vayda, Explaining Human Actions and Environmental Changes. Lanham, MD: AltaMira 

Press, 2009. 
[86] S. J. Armstrong, "Findings from Evidence-Based Forecasting: Methods for Reducing 

Forecast Error " International Journal of Forecasting vol. 22, pp. 583-598, 2006. 
[87] J. S. Armstrong, Long Range Forecasting: from Crystal Ball to Computer. New York: John Wiley; 

available at hops.wharton.upenn.edu/forecast, 1985. 

 71 



 

[88] J. S. Armstrong, Principles of Forecasting: A Handbook for Researchers and Practitioners. Boston: 
Kluwer, 2001. 

[89] S. A. DiLurgio, Forecasting Principles and Applications. New York: McGraw-Hill, 1998. 
[90] J. E. Cox and D. G. Loomis, "Diffusion of Forecasting Principles through Books," in 

Principles of Forecasting: A Handbook for Researchers and Practitioners, S. J. Armstrong, Ed. Boston: 
Kluwer, 2001. 

[91] J. S. Armstrong, "Standards and Practices for Forecasting," in Principles of Forecasting: A 
Handbook for Researchers and Practitioners, J. S. Armstrong, Ed. Boston: Kluwer, 2001. 

[92] L. J. Tashman and J. Hoover, "Diffusion of Forecasting Principles through Software," in 
Principles of Forecasting: A Handbook for Researchers and Practitioners, J. S. Armstrong, Ed. Boston: 
Kluwer, 2001, pp. 651-676. 

[93] R. A. Pielke, Jr., "The Prediction Hall of Fame," WeatherZine, vol. 20, pp. 1-2, 2000. 
[94] A. H. Murphy and R. L. Winkler, "Forecasters and Probability Forecasts: The Responses to a 

Questionnaire," Bulletin of the American Meteorological Society, vol. 52, pp. 158-165, 1971. 
[95] W. H. Hooke and R. A. Pielke, " Short Term Weather Prediction: An Orchestra in Need of a 

Conductor," in Prediction: Science, Decision-making and the Future of Nature, D. Sarewitz, R. A. 
Pielke, Jr., and R. Byerly, Jr. , Eds. Washington, DC: Island Press, 2000. 

[96] A. H. Murphy and E. S. Epstein, "A Note on Probability Forecasts and "Hedging"," Journal 
of Applied Meteorology, vol. 6, pp. 1002-1004, 1967. 

[97] A. H. Murphy and E. S. Epstein, "Verification of Probabilistic Predictions: A Brief Review," 
Journal of Applied Meteorology, vol. 6, pp. 748-755, 1967. 

[98] A. H. Murphy and R. L. Winkler, "Forecasters and Probability Forecasts: Some Current 
Problems," Bulletin of the American Meteorological Society, vol. 52, pp. 239-248, 1971. 

[99] J. D. McQuigg and R. G. Thompson, "Economic Value of Improved Methods of 
Translating Weather Information into Operational Terms," Monthly Weather Review, vol. 94, 
pp. 83-87, 1966. 

[100] B. Fischhoff, "Learning from Experience: Coping with Hindsight Bias and Ambiguity," in 
Principles of Forecasting: A Handbook for Researchers and Practitioners, J. S. Armstrong, Ed. Boston: 
Kluwer, 2001, pp. 543-554. 

[101] T. R. Stewart and C. M. Lusk, "Seven Components of Judgmental Forecasting Skill: 
Implications for Research and the Improvement of Forecasts," Journal of Forecasting, vol. 13, 
pp. 579-599, 1994. 

[102] T. R. Stewart, W. R. Moninger, J. Grassia, R. H. Brady, and F. H. Merrem, "Analysis of 
Expert Judgment in a Hail Forecasting Experiment," Weather and Forecasting, vol. 4, pp. 24-34, 
1989. 

[103] G. Gigerenzer, R. Hertwig, E. van den Broek, B. Fasolo, and K. V. Katsikopoulos, ""A 30% 
Chance of Rain Tomorrow:" How Does the Public Understand Probabilistic Weather 
Forecasts?," Risk Analysis, vol. 25, pp. 623-629, 2005. 

[104] J. M. Nigg, "Predicting Earthquakes: Science, Pseudoscience, and Public Policy Paradox," in 
Prediction: Science, Decision-making and the Future of Nature, D. Sarewitz, R. A. Pielke, Jr., and R. 
Byerly, Jr., Eds. Washington, DC: Island Press, 2000. 

[105] J. S. Armstrong, "Introduction," in Principles of Forecasting: A Handbook for Researchers and 
Practitioners, J. S. Armstrong, Ed. Boston: Kluwer, 2001, pp. 1-14. 

[106] O. Barreteau, "Our companion modeling approach," Journal of Artificial Societies and Social 
Simulation, vol. 6, 2003. 

[107] W. Dare and O. Barreteau, "A Role Playing Game in Irrigated System Negotiation: Between 
Playing and Reality," Journal of Artificial Societies and Social Simulation vol. 6, p. 
<http://jasss.soc.surrey.ac.uk/6/3/6.html> 2003. 

 72 

http://jasss.soc.surrey.ac.uk/6/3/6.html


 

[108] K. R. Fleischmann and W. Wallace, "Ensuring Transparency in Computational Modeling," 
Communications of the ACM, vol. 52, pp. 131-134, 2009. 

 

 73 



 

 

 74 



 

APPENDIX B: WORKSHOP AGENDA 

 75 



 

 

 76 



 

CONTEXT STATEMENT AND AGENDA 
Workshop on Challenges in Computational Social Science 

Sponsored by the Defense Threat Reduction Agency and organized by Sandia National Laboratories 
La Fonda Hotel, Santa Fe, NM  

October 25-28th, 2010 
 
This workshop will assemble an interdisciplinary team of experts to identify and examine major 
challenges to predictive computational social modeling and simulation for high-consequence 
national security decision-making.   The workshop will produce a multi-authored report in which 
subject matter experts from the social and physical sciences  

a) Examine the state-of-the-art in computational social modeling and simulation in 
both research and decision-making contexts, and  

b) Identify challenges facing the field as it transitions to supporting real-world 
decision-making in national security, and 

c) Identify a core set of principles for identifying and pursuing high-quality applied 
computational social modeling and simulation projects. 

We believe these last two points are critical if computational social modeling and simulation 
technologies are to be useful and beneficial in organizational decision-making processes.    
 
Laura McNamara and Timothy Trucano have drafted a literature review and report that examines 
the current state of computational social science in relation to national security decision-making.  In 
this report, we argue that that decision makers investing in computational social modeling and 
simulation technologies should examine how other fields, including weather forecasting and nuclear 
weapons certification, make use of computational modeling and simulation in organizational 
decision-making processes.     The paper examines a range of issues in this regard, from the utility 
and usability of modeling and simulation tools, to verification and validation.    
 
The Defense Threat Reduction Agency’s (DTRA) Advanced Systems and Concepts Office (ASCO) 
is putting this paper through peer review through Summer 2010. Our participants will write a 3000 
to 5000-word response to the McNamara-Trucano paper, focusing on a key theme related to their 
area of expertise. Participants will submit their papers by 15 October 2010, and McNamara and 
Trucano will compile the papers into a single file and issue this to the group two weeks prior to the 
workshop.  We will also assign each paper a discussant.  This discussant is another workshop 
participant who will be responsible for presenting the paper’s ideas to the group, identifying 
questions the paper raises, and leading a feedback exchange for the author. During the workshop, 
McNamara and Trucano will lead a roundtable exchange in which participants discuss each paper in 
turn over a two-day seminar.  Once the workshop is over, authors will revise their position papers 
for publication in a report edited by McNamara and Trucano and published by DTRA.  

 
 
 
 
 
 
 

 
 

 77 



 

AGENDA 
 

 
MONDAY, OCTOBER 25th, 2010 – Participants Arrive in Santa Fe 
 
TUESDAY, OCTOBER 26TH 
 
7:30-10:00  WORKING CONTINENTAL BREAKFAST, STIHA ROOM 
  Introductions – Laura McNamara 

The Background Story, or, “How This Workshop Came to Be” – Laura McNamara and 
Jennifer Perry 
Our Goals and How We’ll Get There – Laura McNamara 
Schedule and Questions – Laura McNamara, All 

 
10:00-10:15 BREAK 
 
10:15-11:00 Discussion #1: Rob Albro discusses Mike Vlahos’ paper 
 
11:00-12:00 Discussion #2:  Mike Vlahos discusses Mark Bevir’s paper 
 
12:00-1:30 WORKING LUNCH, Santa Fe Room 

Summarize and discuss the morning’s themes - McNamara 
 
1:30-2:30 Discussion #3:  Jessica Tunley discusses Lucy Resnyansky’s paper 
 
2:30-3:30 Discussion #4:  Mark Bevir discusses David Sallach’s paper 
 
3:30-3:45  BREAK with afternoon caffeine and sugar-laden treats 
 
3:45-4:45 Discussion #5:  Jeff Johnson discusses Rob Albro’s paper   
 
4:45-5:15 Roundtable: Major Themes from Today’s Discussions 
 
5:15-6:30 BREAK 
 
6:30-8:30 WORKING DINNER, SantaCafe, www.santacafe.com 
 General Discussion of Computational Social Science in National Security Decision-

making 
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WEDNESDAY, OCTOBER 27th, 2010 
 
7:30-9:45  WORKING CONTINENTAL BREAKFAST, STIHA ROOM 

Overview of today’s papers 
Discussion # 6  David Sallach discusses Francois Hemez’ paper 

 
09:45-10:00 BREAK 
 
10:00-11:00 Discussion #7:  Phil Huxtable discusses Jean Scholtz’ paper 
 
11:00-12:00  Discussion #8:  Jean Scholtz discusses Phil Huxtable’s paper 
 
12:00-1:00 WORKING LUNCH, Stiha Room 

Summarize and discuss the morning’s themes - McNamara 
 
1:00-2:00 Discussion #9:  Francois Hemez on Jessica Turnley’s paper 
 
2:00-3:00 Discussion #10:  Lucy Resnyansky on Jeff Johnson’s paper 
 
3:00-3:15  BREAK with afternoon caffeine and sugar-laden treats 
 
3:15-4:30 Wrap Up Roundtable 
 Jerry Epstein and Benn Tannenbaum: AAAS Policy Seminar 
 Next Steps: Revising Papers and Submitting for AAAS Policy Seminar 
  
 
DINNER 
We have no dinner plans for the second evening, since we wanted to give you a chance to explore 
Santa Fe.  We can, however, make a group reservation for those of you who want to attend dinner 
together.  Santa Fe has plenty of options!  
 
 
THURSDAY, OCTOBER 28th, 2010 – Participants Depart Santa Fe 
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Robert Albro, Mining Sentiments: Computational Modeling and the 
Interpretive Problem of Culture 

 
 
Presented at the DTRA/Sandia Workshop on Challenges in Computational Social Science. Santa Fe, 

New Mexico. October 25-28, 2010. 
 

Abstract: Taking off in the mid-2000s, diverse military, intelligence and security agencies and 
environments, with a wide variety of priorities, have devoted increasing attention, funding and 
programming to determine the role of sociocultural knowledge for complex problem-solving across 
an array of parallel efforts. This includes the developing field of computational sociocultural 
modeling. The use of computational sociocultural modeling as a problem-solving tool, however, 
points to definite challenges regarding the concept of culture in particular: how it is identified as a 
problem area for the purposes of modeling; assumptions regarding the sources for, and methods 
associated with, collection of relevant cultural data; and the ways it is coded for incorporation into 
computational modeling architecture. Such challenges also draw attention to the interdisciplinarity of 
the model-building exercise, with respect to the methods, modes of data collection, and the 
compatibility of different approaches across the social sciences with respect to culture. Within 
anthropology – historically responsible for the development of the concept of culture – we can 
point to ongoing debates about the very definition of culture, its utility as an explanatory paradigm, 
and its uncertain relationship to human behavior.  
 
However, at present the extent of the challenge posed by the culture concept for the computational 
modeling community is yet to be fully recognized. In particular, this includes: the question of what is 
meant by cultural data in the first place, the attribution of meaning to cultural data, and the extent to 
which cultural data correspond to real-world referents. Many of these concerns converge around the 
evident disconnect that currently exists between the process of cultural data collection, on the one 
hand, and the process of model construction, on the other, among potential users. If this disconnect 
can take many forms, most simply, it resides in the fact that data collectors, analysts, and model 
builders are typically not the same people. Too often, then, the location, form and identity of data 
are problematically predetermined by policy-driven and mission-specific user or model building, 
priorities.  
 
This has direct implications for the meaning of culture. The starting point for what is recognized as 
data too often derives from prevailing doctrinal definitions, as brought together with the technical 
requirements of model building and of database management systems, rather than any meaningful 
distinction, as derived from a given cultural context or community. Going forward, more attention 
should be given to the ways the conceptual underpinnings of computational sociocultural modeling 
also significantly determine the meaning of data in the first place alongside a robust interdisciplinary 
appreciation for the challenges posed by the culture concept as more than a set of self-evident 
variables to be coded: in terms of: the definition of units of data, reliability, comparative fungibility, 
the relative weighting of cultural and non-cultural inputs, and the basic goals of modeling.  
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Computational sociocultural modeling (hereafter CSC modeling) is at once an important and 

relatively recent development within the computational social sciences and a growing footprint of 

the social sciences in Department of Defense (DoD) problem-solving efforts involving sociocultural 

knowledge.9 As has been noted, “When U.S. forces invaded Iraq in 2003, the U.S. military was not 

particularly concerned about the impact of culture on its operations” (Mansoor 2011: 1). This has 

changed. The emergence of CSC modeling is at once in step with the now well-publicized DoD turn 

toward so-called “culture-centric warfare,” as represented by the counterinsurgency strategies in Iraq 

and Afghanistan10 and by the rising importance of “complex operations” other than war,11 but also 

an expression of the shape that turn appears to be taking, going forward. The present discussion is 

not an evaluation of best practices vis-à-vis how the military should go about incorporating or 

applying so-called cultural knowledge so much as it examines some implications of the shape of the 

cultural turn in recent years for the case of CSC modeling.  

 Throughout this discussion I understand CSC modeling as itself composing a particular 

interpretive scene, that is, as a form of sense making. Understood in this way, the modeling process 

is a creative exercise in choice-making, where models are partial and selective representations of a 

given socio-cultural target domain. As such, we should be skeptical of any claim that CSC modeling 

offers “transparency” from data to decision-making.12 Instead of treating models as simple 

                                                 
9 While the computational sciences have been around for some time, the emergence of a “data-driven” computational 
social science has gained momentum only recently (Laser et al., 2009: 721). This is a story for another time. But, for the 
military, the enthusiasm for computational social science continues a variety of precedents, such as RAND’s mid-20th 
century emphasis on rational choice theory, applied psychology’s development of human factors engineering since 
WWII, and the influence of complexity theory, as a focus upon understanding dynamic self-organizing systems, across a 
range of disciplines. Given this, here I am concerned with the ways that, more recently, “culture” has become a subject 
of attention for computational social science in the context of national security.   
10 In addition to such indicators – representing a military doctrinal shift toward culture – as with the new 
Counterinsurgency Manual (2007) spearheaded by David Petraeus, a sample of literature documenting this turn includes: 
McFate (2005), Jager (2007), Selmeski (2007).  
11 Complex operations include such activities as: development, diplomacy, humanitarian interventions, stability 
operations, nation-building, and other such activities, as these are focused on the winning of “hearts and minds” and on 
intensive non-kinetic engagements with civilian non-combatants.  
12 On several occasions I have heard advocates for different versions of CSC modeling offer this formulation using the 
word “transparency” (or a comparable version of it), as an explanation of the value-added of CSC modeling for the 
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interventions in a forecasting pipeline that intercedes decisively between the real world, that is, the 

empirical facts of the case or objective data, on the one hand, and high-consequence decisions, on 

the other, we should recognize the modeling process as a complex interpretive scene creatively 

generative of new knowledge and as participating in a process of selection. My approach encourages 

a view of stakeholders in modeling as meaning-makers in their own right. As such, here I examine 

ways that uncritical uses of CSC modeling pose the interpretive dilemma of the “hermeneutic 

circle.”13 Since CSC modeling is a part of the interpretive scene of decision-making, it becomes 

important to ask how modeling is understood by users in their work of interpretation. For 

interpretive opportunities like texts or models, the problem of the hermeneutic circle refers to a 

circular inability to move beyond our understanding of a given question in terms other than 

established or received wisdom. (Heidegger referred to our prior “prejudices.”) Here, I consider the 

extent to which the interpretive point of view generated by a given cultural model is in significant 

degree already built into the model’s purposes and architecture, where it anticipates the “problem” it 

purports to address. My basic question, therefore, is the extent to which, and how, computational 

models using cultural knowledge might express the values of their primary stakeholders more than 

they provide access to hitherto unknown or new insights.14 One implication of this approach to CSC 

modeling is the exercise of skepticism regarding whether such models are useful for addressing 

uncertainty. 

Here I am not concerned with the entirety of the diverse developments composing the 

expanding field of CSC modeling. Instead, I focus narrowly on the circumstances of the culture 

concept, as it becomes the subject of the work of computation social science. In what follows, I 
                                                                                                                                                             
military. The issue this raises is that of exactly what role in the decision-making process is assumed for CSC models: as 
one among a variety of tools available to decision-makers or as a kind of crystal ball. 
13 Hermeneutics is defined as the study of the methodological principles of interpretation. The problem of the 
hermeneutic circle has been raised most regularly in debates among phenomenologists, in particular, Martin Heidegger 
(1971), as a problem that suggests the limits of interpretation. 
14 This position has been significantly influenced by the perspectives on CSC modeling taken by McNamara (2010) and 
Turnley and Perls (2008) respectively. 
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address the question of culture as a particular form of knowledge in the context of model 

construction and application. In doing so, I am specifically concerned with what sort of knowledge 

is identified as useful “cultural knowledge,” as this concept is incorporated into the process of CSC 

modeling. I treat the modeling process as active work done in order to produce particular cultural 

understandings but also understandings of culture. Rather than CSC modeling as a relatively benign 

marriage of cultural analysis with new kinds of computing power and potential access to new 

sources of cultural data, I explore ways that the meaning of cultural data in the DoD context is itself 

contingent upon the modeling process. This, in turn, has direct implications for the relevance and 

potential applicability of the different social sciences to this kind of work, given distinct 

epistemological investments,15 and suggests possible limits upon interdisciplinarity as a coherent 

strategy of knowledge production. 

 Throughout I compare interpretive frameworks of sociocultural anthropology to that of 

CSC modeling. Reasons for this are several-fold: 1. my own disciplinary training is in anthropology; 

2. historically this discipline has been largely responsible for developing the concept of culture in the 

social sciences; 3. anthropological expertise – in the form of ethnographic data collection and the 

interpretation of cultures – has been actively sought by diverse military shops in recent years; 4. the 

discipline of anthropology also has been proactive in addressing the implications of the military’s 

pursuit of more sophisticated cultural knowledge, in the course of which it has begun to develop a 

corpus of critique of the military’s culture concept. The present argument occupies this space of 

comparative dialogue between anthropology’s and the military’s respective accounts of culture. 5. 

The work of CSC modeling has also been pursued as an exercise in interdisciplinarity. And so, a 

comparison of the ways the culture concept is deployed across distinct disciplinary commitments – 

                                                 
15 Epistemology gives attention not to what we know but to how we know it. In this sense, I am concerned with the 
ways that different social sciences, including anthropology and computational social science, promote different – and 
sometimes incompatible – ways of knowing through their characteristic methods, tools, and conceptual apparatus.  
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in this case between the cluster of disciplines composing the cognitive sciences and interpretive or 

symbolic anthropology – helps us to get a clearer handle on what is at issue in the promotion of, and 

skepticism about, the work of CSC modeling.  

 

Some disciplinary sources for the “culture” of CSC modeling 

 One call heard regularly about CSC modeling is that, as a developing field, it is in need of a 

comprehensive theory of culture, that is, a “coherent conceptual scheme for the study of culture” 

(Panzarasa and Carley 2005: 1). This call is often accompanied by the complementary need for a 

“shared framework for data.” This need, often voiced, is yet further specified, in terms of the goal of 

making data interoperable, easily transferrable, and able to be merged, ideally as incorporated into 

computer-based database management software. As Major General Michael Flynn, currently the top 

military intelligence officer in Afghanistan, recently put it, “There is a mountain of information. And 

we aren’t doing enough to capture that information…[We need] to share information across all 

barriers and more quickly.”16 This assumption about information, as variable in its content but as 

epistemologically equivalent data, at once expresses the felt DoD urgency to control the information 

battlefield while also underwriting the concern in CSC modeling to establish “common 

vocabularies” alongside “universally accepted taxonomies” (Numrich and Tolk 2010), including for 

cultural data. As one DoD program manager who also funds CSC modeling put it, 

“Misinterpretations easily result from lack of common vocabularies” and “progress requires a 

common framework and perspective” (Estabrooke 2009). But what is often presented as a logistical 

priority and needed effort to develop a shared lexicon for an emergent field – the computational 

                                                 
16 Quote taken from presentation made by Major General Flynn  as part of the National Research Council’s Workshop 
on “Unifying Social Frameworks: Sociocultural Data to Accomplish Department of Defense Missions,” Washington, 
D.C., August 17, 2010. 
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modeling of culture – in fact also has fundamental consequences for what the concept of culture – 

as a unitary [something] – is taken to be in the modeling context going forward.  

 The call for information sharing (as a tactical battlefield goal) makes common cause with the 

need for a shared vocabulary (now as a conceptual problem of the field) and with the 

complementary need for a common taxonomy (as a shared code book for culture). I am not 

suggesting that the military should not be finding better ways to share information, using a common 

vocabulary and taxonomy. But I am suggesting that such an emphasis, in turn, appears to inform the 

DoD approach to “culture,” as equivalent to a unitary body of knowledge and system of 

classification of a people, held in common and expressed in its own idiom. In short, we can compare 

this culture concept to the largely defunct if classic anthropological description of culture as a “total 

way of life.”  

The computational study of culture assumes that culture is one or another kind of (dynamic 

and nonlinear) holistic system. If no longer a prevailing assumption among a majority of 

anthropologists, holism, as a concept, has historically been a basic ingredient of the discipline’s 

“omnibus” definition of culture, as with E. B. Tyler’s formulation of a “complex whole” (see Fischer 

2007: 2). Yet, the assumption of “culture as a system” (see Casebeer 2005) appears to be widespread 

in the CSC modeling community.17 “Systems thinking” is historically well-established DoD common 

sense informing the relevance of the sciences for military operations.18 And it is also a technical 

requirement for any given computational model, so that it can be validated as internally consistent. 

Systems-based approaches, further, promise the advantages of: a higher level of abstraction, and of 

the transcending of disciplinary differences of approach, a common language, and relational 

thinking, along with holism (see Cummings 1980).  

                                                 
17 When referring to a system I mean it in the broadest sense to indicate any organized, and cohesive, complex of 
interactive elements.  
18 For a trenchant discussion of how this unfolded during throughout the second half of the twentieth century between 
DoD and the so-called “behavioral sciences,” consult Robin (2001). 
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Culture becomes most legible in the work of CSC modeling as a system, where the goal 

quickly becomes understanding the whole of it – as a central tendency, cultural prototype of some 

kind, or a set of “core cultural values” – through a working out of the systematic relations among 

the parts. If this is an agent-based model, these parts are the aggregate of a collection of interacting, 

boundedly-rational, autonomous, and adaptive decision-makers with “sentiments, opinions and 

beliefs,”19 which are built into the model as the agent’s underlying motivation. The relations among 

parts are also often understood by way of analogies with language (grammar), with geography 

(maps), as well as with computer programming itself (codes). Kathleen Carley, an influential voice 

among CSC modelers, has sought to describe culture as a “collective cognitive system.” that 

possesses “emergent properties” shaped by underlying “grammars” governing interaction among the 

parts. In somewhat mystifying fashion and more elaborately, she has also described culture as 

“networks of minds glued together by cognitive chains of interactive thinking” (see Panzarasa and 

Carley 2005: 3). We should note an equation of underlying behavioral motivations with an 

underlying grammar. And such ideas inform her current work, which pursues the realistic modeling 

of “complex socio-technical systems where people, groups, their ideas, beliefs, and activities co-

evolve” (Carley 2009: 13).  

As this brief summary suggests, CSC modeling as a computational exercise has its roots in 

the cognitive branches of the social sciences. For cognitive anthropology, the culture concept 

corresponds to a mental phenomenon,20 cognitively organized, and usually represented as a system 

of rules. Typically the structure of language – instead of real-time social discourse – serves as a 

paradigm for cultural analysis more generally. And culture is treated as analogous to the linguist’s 
                                                 
19 The phrase – “sentiments, opinions and beliefs” – comes from my notes of a meeting (February 24, 2010) with a 
MITRE project leader for multiple DoD projects, all of which share a focus on how best to transition socio-cultural 
understanding by way of modeling to the U. S. military. My interest in noting this phrase is to draw attention to the 
regular grouping of these terms in the work of CSC modeling, where cultural meanings come to be equated with 
opinions. I develop some further implications of this below. 
20 In the terms of disciplinary history, the equation of culture with cognition has a well-established genealogy traceable to 
such foundational ideas as Durkheim’s “collective representations.” 
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grammar (Foley 1997: 108), similar to Chomsky’s “computational system,” as representing the 

grammatical set of possible combinations of signs. As classically represented by componential 

analysis, characteristic work generative of the cognitivist culture concept includes the collection of 

sets of words in a given native language assumed to denote distinct categories in specific semantic 

domain, that is, “folk classification.”21  

Cognitivist starting points such as these also make evident sense to DoD-type behavioral 

and cognitive science, tasked, in the words of Major General Flynn, with explaining, “What makes 

people tick?” But such holistic cognitivist and computational approaches, however, are in 

problematic tension with a more contemporary account of culture among interpretive and symbolic 

anthropologists, as public (rather than a mental state), historically constituted, open-ended, multiply 

interpreted, unevenly distributed, and regularly contested.22 Concern for the culture-as-system-as-a-

whole, in other words, risks the gross misrecognition of concertedly non-holistic cultural realities, 

including the ways meanings circulate through societies, as multi-vocal (that is, as subject to multiple 

interpretations), and as publicly and dialogically co-constructed. Rather than a political critique, these 

different assumptions about what culture is and how it works underwrite contemporary 

anthropological and computational social scientific projects respectively, and help to explain 

reservations among anthropologists about the leveraging of culture for DoD problem-solving. I will 

return to the implications of this later.  

 

Doctrinal sources for CSC “culture” 

                                                 
21 Given that our subject is computational modeling, we should note, as well, that such work in the cognitive social 
sciences historically has actively traded on the metaphor of the human mind as like a computer, that is, as an 
“opportunistic information processor” (Foley 1997: 115). 
22 This description is at best an abbreviation of a much more protracted, and ongoing, disenchantment with the culture 
concept within U. S. anthropology in particular, which has taken various forms, and which has been ongoing since the 
mid-1980s. For further details about anthropology’s changing relationship to the culture concept, and discussion of its 
diminished utility as a unifying disciplinary term, see: Abu-Lughod 1991, Fischer 2007, Scott 2003.  
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Examples from Carley’s work, such as BioWar, a city-scale model for exploring how 

epidemics behave, are comparable to other agent- or network-based cultural models, such as 

NonKin Village, an agent-based model developed by Barry Silverman. NonKin Village is a SimCity-

like training game that allows users to explore factional scenarios in a “foreign culture” (e. g. 

Baghdad), while deploying both COIN and SSTR (“Support for Stability, Security, Transition and 

Reconstruction”) “doctrine strategies” (see Silverman et al. 2010).23 NonKin also functions as a 

“human terrain data framework,” having linked up its human terrain village data with the Marine 

Corps MarineLink database (Pietrocola 2009: 18). This raises a further issue about the ways CSC 

models are currently designed and populated. At least some of DoD’s CSC programs are now 

proposing to provide, as one program director put it, “validated models to support human terrain 

understanding.” Such a statement does not imply direct collaboration with the Human Terrain 

System (HTS) program per se, but goes beyond HTS representing the doctrinal emergence in DoD 

of a more generic “human terrain analysis” and “human terrain mapping” (see Albro 2010a; Marr et 

al. 2008), imagined to combine ethnographic-type data with geospatial data and qualitative with 

highly technological methods of data collection. 

This leads to several further implications: 1) DoD’s CSC modeling program’s are actively 

selling themselves as a capacity for HTS-like socio-cultural cells to be hosted by the United States 

Africa Command and other regional combatant commands (e. g. ONR 2010). 2) It has become 

increasingly routine for CSC models to promote their relevance in terms of the analysis of human 

terrain, as with a model recently demonstrated to me to explore distributions of violent language on 

jihadi weblogs and elsewhere, which describes itself as “mapping the sociocultural terrain using 

                                                 
23 Silverman’s NonKin Village model has recently been described in the following terms: “The program, which loosely 
resembles the game SimCity, is part of a US government effort to develop sophisticated computer models of real 
Afghan villages – complete with virtual people based on actual inhabitants – in an attempt to predict their reaction to US 
raids and humanitarian aid” (Stockman 2010).  
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social and news media.”24 In a comparable manner, Kathleen Carley’s CASOS modeling team 

emphasizes their role as a reach-back cell, intending to feed extracted socio-cultural information 

back “to field researchers to facilitate rapid assessment of the human terrain” (Carley 2009: 13). 

Likewise, as researchers from MIT’s Lincoln Laboratory have suggested, CSC modeling makes an 

excellent tool for “human terrain preparation” in order to combat “clash of civilizations”-derived 

negative attitudes about “the West.”25 

3) But of greater importance is the fact that military doctrine, as with the new doctrinal terms 

human or “cultural terrain,” directly influence the form and function of a given model. During the 

conversation with a computational modeler following a CSC model demonstration of an 

“information operations scenario” about how best to “foster tribal support,” he underscored the 

importance of building a model that offers a “holistic view” but that also “fits with the doctrinal 

constructs of the user community.” In fact, for the model in question, the cultural knowledge, how 

cultural data is collected, and how it is expressed by the model had to conform exactly both to 

PSYOP and to JIPOE (“Joint Intelligence Preparation of the Operational Environment”) doctrine 

or, in his words, “it won’t get used.” Whether COIN, PSYOP, SSTR, or JIPOE doctrine, the critical 

point is that doctrine is used as a starting point for the modeling code, or algorithm, underwriting 

the computational work of the model itself. The military’s definition of culture, in other words, as 

defined by its doctrinal parameters, provides the grammar for whatever sense-making activities the 

model is responsible for. But the military’s culture doctrine is at best several times removed from 

any particular cultural reality with which a given model might be concerned. And doctrinal sources 

for culture have their own conceptual biases designed to encourage familiarity and legibility among 

the specific user community of military personnel rather than to describe cultures in their own 

terms.  

                                                 
24 Chen, Hsinchun, “From Dark Web to Geopolitical Web: Collection and Analysis,” slide 42.  
25 Lemnios, Zachary J. and Victor Zue, “Research Challenges for the Next Decade,” slides 2-3. 
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An emerging anthropological critique of the military’s culture concept has begun to point to 

some of its anachronistic limits and epistemological biases, while emphasizing notable differences 

between it and current anthropological engagements with culture (see Davis 2010; Gusterson 2010; 

Price 2010). For CSC modeling, this can be a concern for ways that the design, the internal structure 

or architecture, of a model might incorporate diverse “unwarranted assumptions” (Zacharias et al. 

2008) regarding the cultural domain. What we appear to have here is a case of CSC models running 

up against the problem of the hermeneutic circle. The DoD is pursuing the generation of knowledge 

for decision-making about culture significantly based on self-referential “unwarranted assumptions” 

built into its own current doctrinal framework for culture, which tell us more about the military and 

military culture than about other cultures. Fundamentally, this might be a case – in the words of 

Hugh Gusterson (2010: 279) – of seeking “algorithmic solutions to hermeneutic problems.” What 

this comment dramatizes are different methodological and conceptual commitments about the 

sources and meaning of cultural knowledge. In the military mode, “cultures” can be modeled in 

terms of “terrain.” In the anthropological mode, cultures are open-ended problems of the 

negotiation of multiple meanings. These differences are not trivial, and have real consequences for 

an interpretation of the cultural realities of a given community, country or region.  

Particularly for the Marine Corps, successfully navigating the “cultural terrain” has become a 

critical ingredient for the success of COIN. As a concept cultural terrain was formally leveraged into 

the Marine Corps beginning in 2004, as the result of work by its Cultural Awareness Working Group 

among others, which explained that “culture is simply another element of terrain.” The Working 

Group suggested the term be introduced since “terrain” is already a well-established concept 

“familiar to all military personnel,” and so, “cultural terrain is a term that can be used to ease the 

incorporation of cultural awareness into training, planning, and operations.”26 As is repeatedly 

                                                 
26 Connable, Ben and Art Speyer, “Cultural Awareness for Military Operations, slide 7. 
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emphasized when talking about potential roles of CSC models for DoD missions, “Only a concerted 

effort at defining mission-oriented needs can provide the appropriate framework for modelers” 

(Numrich and Tolk 2010: 5). At the same time, however, we should think about the ways that 

attention to the needs of the particular community of users can also begin to drive the very form of 

the modeling exercise to the detriment of that which is ostensibly the subject of a given model. 

One aspect of this problem is the question of “mapping.” As Paula Holmes-Eber 

emphasizes, “Marine learning emphasizes visual representation of information through maps, 

graphs, and power points.” She notes, “Cultural information is often referred to using military 

geographic terminology” (2007: 5). Modelers have also noted this. As one model-builder explained 

in reference to the inclusion of geospatial data in his model, “If you can’t relate it to a map, and 

understand how things are visualized, it doesn’t work. So, we had to put ‘geospatial’ in there.” And 

when training prospective users, the most frequent request is, “Let’s see it on a map.” The need for 

mapping, in short has less to do with any engagement with previously unknown cultural knowledge 

so much as it holds a “mirror” (see Rorty 1979) to the ways that military users are encouraged to 

think about culture in the first place. And the user requirement of visualization has consequences for 

the technical incorporation of culture into CSC models.27 

The concept of cultural terrain signifies more than just the introduction of a new lexicon. It 

incorporates the culture concept into the Marine’s knowledge space in ways significantly determining 

what culture is for. “Culture” has now been incorporated into terrain analysis and defined as “a 

feature of the terrain that has been constructed by man.” As is explained, “Included are such items 

as roads, buildings, and canals; boundary lines; and, in a broad sense, all names and legends on a 

                                                 
27 Commenting on the relationship between counterinsurgency, culture and visualization, Mirzoeff (2009: 6) observes, 
“Culture is itself understood in this contradictory fashion as a totalizing system, governing all forms of actions and ideas 
in an oscillation between Victorian anthropology and the first-person-shooter video game.” 
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map.”28 It is hard to miss that here culture has become a cartographic asset, with attention directed 

to culture as a feature of the landscape and as a spatial arrangement to be surveyed. Culture is here 

significant as it is integrated into a topographic “complex whole.” To reliably read the cultural 

terrain, any behaviors need to stay fixed. People become a spatial array of points and cultural 

meanings are inscribed in locatable physical places and structures, through which people move and 

to which they orient themselves. U.S.  Marines in theater are supported with a variety of map-like 

tools to help them read the cultural terrain, beginning with cultural smart cards.29  

While individual Marines are unlikely to treat culture in such a relentlessly cartographic way, 

mapping nevertheless does not simply represent the world. It actively produces it. As a feature of the 

terrain, culture is now particularly available to geospatial technologies dedicated to mapping three-

dimensional object space, terrain visualization, GIS integration, and other interoperable data 

management tools. This makes sense, too, if you want to leverage “every soldier as a sensor” to 

better enable the availability of the human or cultural terrain knowledge-base across the battle space. 

Human Terrain Teams, often supporting Marine units, are now being trained to use the MAP-

HT/TIGR Tactical Ground Reporting System while on patrol, a map-centric application helping to 

collect cultural facts more efficiently. Meanwhile, CSC modeling tools such as AutoMap – a text-

mining software – automatically classifies information into a spatio-temporal map grid of “social, 

knowledge, belief, resource, and task networks.”  

The cultural terrain, as doctrine and as model architecture, is hard to distinguish from the 

goal of the information control of the battle space. It makes perfect sense for Marines that the 

efficacy of their culture doctrine is to better equip them to read their environment. As a terrain 

feature, culture is also subject to technical enhancement to provide a more comprehensive 

                                                 
28 Joint Publication 1-02, p. 119. 
29 Parts of this discussion of the development of culture doctrine for the Marine Corps (and for the military) can also be 
found in Albro (2010b).  
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visualization of it. But conceptions of cultural terrain are unlikely to be relevant frames for cultural 

meaning among others, particularly the civilian counterparts engaged by U.S. forces and who are the 

subjects of CSC modeling exercises. With such arrangements, we learn more about modelers and 

Marines than about anyone else, and we become insulated from the interactive basis of cultural 

interpretation that is the perpetual context of ethnographic work.30  

 

Data extraction and implications for ethnography 

CSC modeling programs appear to be ambivalent about the question of data. On the one 

hand, the concern for data is recognized as a basic problem for future success of computational 

modeling in DoD, as well as one primary purpose of modeling, which is to provide one reliable 

means for decision-makers to move “from data to decisions.” On the other hand, as I have heard 

often, these same programs actively distance themselves from the work of data collection. As one 

program director stated the matter, “We are not a data program!” Indeed, as Numrich and Tolk 

(2010: 3) note regarding the CSC community, “Nobody wants to be responsible for data.”31 But, 

given priorities of counterinsurgency and of knowing the terrain, there has been a push to populate 

CSC models with more grounded cultural details, specifically, ethnographic data.   

Modelers, in their turn, have expressed concern that “unstructured narratives” – as these 

represent the universe of qualitative data collection – are unsystematic and so resist incorporation 

into modeling architectures. They are usually “not useful.”32 As Turnley and Perls (2008) have 

pointed out, computational models require data that can be manipulated quantitatively or 

                                                 
30 As Laura McNamara (personal communication) has suggested, the culture-as-terrain metaphor also has the effect of 
effacing the ways that cultural understandings are also historically produced. As such, modelers tend not to 
“acknowledge history” as part of model-building. .  
31 These comments, if frequent, are also part of a larger story and context within DoD and the intelligence community 
historically, where “collectors” and “analysts” are considered distinct non-overlapping roles. Of course matters are 
different for anthropologists, where these roles coincide in the same ethnographer.  
32 These quotes are taken from my notes on conversations with different DoD-funded computational modelers during 
the past year.  
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algorithmically, while sociocultural knowledge typically takes narrative form. In this sense, 

computational models actively exert a push away from context-dependent or domain-specific data of 

all varieties. For example, semi-regular statements of the goal of “relative data completeness” 

operate epistemologically with an empirical conceit that meanings are somehow contained in 

vehicles, for extraction. And yet, as the point is made, “Methods are needed to transform 

ethnographic findings about society’s self-perceptions and decision-making skills into frameworks 

that can inform behavior models.”33 Such a call is commensurate with the goal of a “rich” 

representation of data composing the virtual modeling environment. But, we need to think further 

about what sorts of challenges ethnography fundamentally poses for CSC modeling efforts.  

Suggesting ways to fix cultural intelligence gathering in Afghanistan, Flynn (2010) has 

emphasized a preference for detailed and more ethnographic-like “district narrative assessments.”34 

And as already discussed for the modeling efforts of Carley, Silverman, and others, one project has 

been comprehensive incorporation of qualitative human terrain data from the field into models. 

Modelers have, therefore, begun to look to automation to speed up the extraction of “data” from 

“texts,” including the development of new semi-automated “rapid ethnographic retrieval” systems.35 

But such technologies come with a price. We should note that model requirements are now driving 

qualitative data collection. In similar fashion, human terrain teams have been switching from “open-

ended reports to more rigid questionnaires that can easily be uploaded into a database” (Stockman 

                                                 
33 This quote was taken from a 2008 Broad Agency Announcement circulated to attract proposals for the Office of 
Naval Research’s “Human Social Culture Behavior Modeling Program.” 
34 We might note the evident similarities between Flynn’s proposal, in the context of an ongoing occupation, and 
colonial era British efforts to do the same, where British social anthropologists were in the regular business of collecting 
data to be used in “handbooks of law and customs,” used in turn by British colonial administrators as blueprints for 
dealing with native populations in sub-Saharan Africa, India, and elsewhere. This is the source of the original charge 
against anthropology as a “handmaiden to colonialism.” 
35 Quoted in Carley (2009: 13).  
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2010).36 Here compatibility and inter-operability are driving the relationship between data collection, 

model building, and analysis, rather than the process of inquiry itself.  

Hard-to-classify “field notes” now quickly take the form of more standardized “field 

reports,” which can ideally be quickly scored with a commonly used “code book” of some sort like 

the popular ASCOPE (Area, Structures, Capabilities, Organizations, Peoples, and Events) system for 

the classification of field data.37 Relatively thin more easily extractable data sources are now given 

priority, such as available measures of public opinion, news articles, press releases, national polling 

data, or information posted on websites. “Ethnographic field notes” are also discussed by modelers, 

but in the words of Kathleen Carley (2009: 13), in ways “similar to the type of factors currently 

extracted from the human relations area files.” This can easily become decontextualized cultural 

“content knowledge,” to be counted, aggregated, grouped, and finally archived. With this concept of 

ethnography, models are given a task we might describe as the generation of significant information 

about a patchwork world of data points – like a series of cultural boxes to check off – representing 

quantifiable variables of often pre-assigned cultural relations. In most cases, qualitative data is shoe 

horned into the DoD epistemology for information, as at once: extractable, mergeable, subject to a 

common lexicon, and reliably managed by interoperable databases. A concern for requirements for 

use of cultural data here appear to be prioritized over and above the significance attributed to culture 

by the cultural subjects themselves.  

Ethnographic data is being leveraged in DoD, in keeping with overriding goals for 

information about populations, in ways that increasingly emphasize “extraction” to the detriment of 

what we might call the “dialogic ground” (Tedlock and Mannheim 1995) composing the scene of the 

work of ethnography, as it is understood by contemporary anthropologists, where cultural meanings 

                                                 
36 In making this observation, I am setting aside some evident problems associated with the HTS program, in terms of 
recruitment, training, ethnographic practice and ethics. This does not, however, diminish those problems. 
37 ASCOPE is a qualitative data collection technique available to civil affairs personnel and in which human terrain team 
members are currently trained.  
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are outcomes of reciprocal negotiations with counterparts in the field. The key distinction here is 

between pre-encoded and habitual representations available for collection and removal and dialogic 

practice as contextual meaning-making. Another way of making this distinction is that between 

identification of “immobilized variables” (where “their culture” is composed of “x” features) (see 

Fischer 2007: 1) and a more inquiry-driven process attuned to the possibilities of unexpected or new 

kinds of cultural understanding outside of any given meaning horizon..  

The DoD need to pursue specific kinds of population-centric information, identified as a 

prior goal, therefore, drives an increasingly less open-ended more scripted ethnographic engagement 

that generates knowledge already determined to be important, in standard formats, rather than the 

negotiated serendipities of “thick description”38-style ethnography that is particularly suited to the 

study of unpredictable outcomes, for which typically where you start is not where you end up. We 

might be face to face with what Robert Rubinstein has called the “fallacy of detachable cultural 

descriptions.”39 In the absence of counterparts’ voices engaged with our own, or any context other 

than our own requirements and priorities, we tend to highlight differences between us and them by 

objectivizing other cultures as distinctive and ourselves as normal. In this way, CSC modeling can 

become a technology for the production of cultural difference as objective fact in ways that distance 

us from an appreciation of others’ interpretations of their own cultural realities or of us.  

 

Opinion mining, new social media and sentiment classification 

 As a computational modeling professional noted to me, these days “everyone is pushing for 

extraction.” Part of the reason for this is the difficulty of populating CSC models with hard-to-

collect “thick description” ethnographic data, which seeks not only to describe cultural behavior, but 

                                                 
38 The term – thick description – is borrowed from Clifford Geertz’s (1973) famous essay, “Thick Description: Toward 
an Interpretive Theory of Culture,” which in turn borrowed from Gilbert Ryle, to contrast ethnographic descriptions 
“thick” and “thin.”  
39 Robert Rubenstein: personal communication.  
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to provide its meaningful context. Therefore, modelers have looked for alternatives. The most 

promising of these, from the modeling point of view, is largely open source online digital 

information. Of particular interest is Web2.0-type social media content, as generated by different 

“target groups.” Using sophisticated web crawling and spidering software suites, modelers can 

collect terabytes of data from a wide range of platforms, from web sites, blogs, YouTube, Second 

Life, and HTML pages of all sorts, and without having to interact with people. The extracted and 

compiled data comes from simple Word documents, PDF files, PowerPoint presentations, image, 

video and audio files, among other kinds of content. A variety of further analytical activities can be 

performed on this massive data source. But here I address just one such activity, increasingly a part 

of CSC modeling collection and analysis, referred to as “sentiment extraction.”  

 The agents that compose CSC models are regularly described as having been given realistic 

“sentiments, opinions, and beliefs.” There are wider and narrower versions of this claim, ranging 

from “preferences,” “sentiments,” or “choices” to the inclusion of the understanding of 

“motivations,” “genre,” “style,” value systems,” and even including “sub-cultures.”40 One CSC 

modeling program has described its priority as the “extraction and attribution of sentiments to 

peoples and cultures.” And given that our consideration is the incorporation of cultural knowledge 

into CSC modeling, here I give attention to the ways that sentiment is used often largely 

interchangeably with cultural belief in the work of sentiment extraction and classification. While, in 

fact, the two concepts are notably different, regular slippage between these several synonyms 

amounts to an additional way that culture is smuggled into modeling’s interpretive scene. However, 

in so doing, the computational process grossly misrecognizes the significance of culture, including 

the holistic “total way of life” version of culture that otherwise has such traction in this work. 

                                                 
40 For discussion of “sub-cultures,” see Lemnios and Zue, op cit., slide 10. The rest of these terms have been gathered 
from across multiple primary and secondary sources, as terms used in overlapping ways both with “sentiment” and with 
“cultural meanings.” 
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 The computational work of sentiment extraction compiles largely textual data. So-called 

sentiment analysis is understood by modelers as fundamentally a text classification problem. This 

classification work can be performed at the level of an entire document, a sentence, or sentence 

clause. As Liu (2010: 267) notes, “Natural language documents are regarded as unstructured data,” 

which is subject to traditional data management tools “to be applied to slice, dice, and visualize the 

results in many ways.” Sentiment, in this case, refers to usually subjective opinions. Typically, such 

“opinionated text” is understood to express either a positive or negative orientation. And the work 

of sentiment extraction and classification boils down to the identification of the orientation of 

opinionated texts (or sentences or clauses), understood to be relationally contrastive (e. g. 

favor/disfavor, like/dislike, accept/reject, etc.).41 Modelers seek to identify orientation indicators 

using a “bag of words” approach that identifies grammatical features or lexemes like adjectives and 

adverbs. Once identified, these lexemes are assigned a value. The arrangement of these relationships 

can then be mapped and represented as a tree, hierarchy, or taxonomy.  

Such a sentiment analysis mining the newly massively available user-generated Web content 

first became relevant in market research, as models collected and interpreted information indicating 

consumer attitudes about particular products. It has only recently been brought over for use in the 

DoD context. We should, however, note that sentiment classification, as a computational means of 

coming to terms with culture, has its origins in market research rather than any thinking about 

culture per se. What appears to be the case is that opinion – understood as subjective expressions, 

also often called “feelings and beliefs,” of pro/con with respect to something else – is being treated 

as synonymous with cultural meanings.  

                                                 
41 While I offer only a basic gloss of sentiment extraction and classification here, as part of the full suite of tools used in 
CSC modeling, this process is subject to considerably greater sophistication, as texts, or sentences, can be further 
separated into component parts, with each possessing multiple attributes. Adding to this complexity is the fact that sets 
of sentiment indictors can also be fuzzy. For further details see Andreevskaia and Bergler 2006; Liu 2010; Yi and Niblack 
2005.  
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It is important, furthermore, to recognize that sentiment classification requires a 

bootstrapping approach, and often uses online dictionaries like WordNet, to first grow a lexical or 

semantic word set composed of antonyms, synonyms, or other relational terms, which the model 

then utilizes to evaluate and organize opinion polarity in unstructured online natural language texts. 

Currently CSC modelers promise ever greater realism in such areas as the understanding of complex 

religious motivation, economic incentives, and the significance of tribal affiliation. Yet, sentiment 

classifiers admit that at present it remains particularly challenging effectively to relate opinion words 

to domain specific contexts. One way to understand this is that – hermeneutic circle-like – such 

sentiment classification relies upon already established classificatory sets of relations, independent of 

the model’s work of interpretation, and becomes difficult or ineffective when seeking to make sense 

of diverse vernacular worlds. Furthermore, cultural meanings associated with religious motivation, 

say, can be understood as context-specific propositions about the cosmos. But, we cannot in turn 

hope to understand such meanings in their own terms by requiring that they exhibit a pro/con 

attitude with respect to something else, as if such beliefs were analogous to consumer behavior. 

The modeling work of sentiment extraction and classification is familiar, insofar as it 

rehearses a developed strategy of componential analysis and similar efforts designed to establish the 

systematicity of semantic contrasts or of binary distinctions (Foley 1997: 108). And, as with 

componential analysis automated componential sentiment extraction also treats culture, as organized 

sets of lexemes, as a code to be cracked. We should note the regular call among CSC modelers to 

“create a code book” for non-quantitative data in particular, which includes a “list of all the desired 

variables and a description of how the variable is to be interpreted” (Carley 2009: 13). Key indicators 

of “sentiments, opinions, and beliefs,” are assumed to infer more fundamental or hierarchically 

causative “factors that influence their behavior” (Numrich and Tolk 2010: 2), treated as 

“preconditions.”  
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But as linguistic anthropologists Mannheim and Becker (1995: 238) observe in this regard, 

the notion that a “code preconstitutes language” means that “utterances and meanings are so to 

speak always already written.” They note that the code metaphor is both “subversive of a dialogic 

image of language” (1995: 237) at the same time as it leads to what they call the “troping” of other 

cultures. That is, it makes other cultures appear to be exotic when compared to our own. 

Computational approaches to sentiment extraction also reveal a basic difference of orientation with 

respect to where meaning resides: on the one hand, a cognitive/computational code that is assumed 

to underwrite and to determine the systemic properties of cultures; on the other, ethnographic 

approaches to the public, expressive and active meaning-making of people viewed as “creative 

cultural producers” (Fischer 2007: 38), characteristic of contemporary interpretive anthropology, 

where in the spirit of Bakhtin, meaning-making involves the active reframing of the past, or 

reworking of histories, into present relationships. This difference between habitual motivations and 

creative expressions is not casual but epistemologically fundamental, and it locates very different and 

largely incompatible projects for culture. 

* * * 

 The computational modeling of culture potentially offers increasing sophistication and 

interpretive power, as DoD seeks to make sense of “complex operations.” At present just how CSC 

modeling is best incorporated into the broader interpretive scene for high consequence decision-

makers is yet to be sharply defined. Part of this boils down to the technical challenges posed by 

highly sophistical computational models, which means that laypersons can too easily use them as like 

“terministic screens”42 – grids of intelligibility or legibility through which information is passed – in 

                                                 
42 I am borrowing this term from the literary critic Kenneth Burke.  
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the work of sense-making, even as they have little detailed understanding of them. At the same time, 

CSC models can pose challenges to an often assumed social scientific interdisciplinarity, since 

epistemological commitments of distinct disciplines concerned with culture are not necessarily 

consistent with those of computational cultural knowledge production, as I have explored by way of 

its awkward relationship to the semiotic work of contemporary interpretive anthropology. For the 

case of contemporary anthropology, this includes: an emphasis upon the uneven distributions and 

multiple interpretations of meanings (instead of holism), dialogism (rather than extraction) and 

emphasis on creative expression (rather than habitual codes). But, when we consider: the doctrinal 

sources for cultural knowledge in CSC modeling construction, its attention to user priorities rather 

than to those of key counterparts (and their accompanying culture), its preference for context-

stripping thin and box checking ethnographic data, as well as its use of code books with pre-

established values, more fundamentally, a real question remain about the extent to which CSC 

modeling in fact generates fundamentally new interpretations of anything or whether it is an 

illustration of a technical engineering-type DoD social science unwittingly caught up in a 

frustratingly circular and self-referentially contained practice.  
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Abstract 
 
This paper asks: what are the implications of anti-naturalism (that is, the interpretive nature of social 
science) for the ways in which we conceive and use computational models? Computational models 
are especially commonplace as ways of generating forecasts and predictions of natural phenomena, 
such as the weather and earthquakes. In addition, they are widely used to aid thinking and policy-
making with respect to large-scale and aggregate social phenomena and especially the unintended 
consequences of a vast array of actions as exemplified by traffic flows or macro-economics. Finally, 
a small but growing number of scholars are suggesting that computational models might play a 
similar role in dealing with a wider range of social and cultural activity. This suggestion has become 
particularly prominent in the area of intelligence and security. 
 
It is all too easy to imagine that the differences between these domains – the natural world, 
unintended consequences, and social and cultural activity – are purely technical ones. Scholars often 
imply, for example, that the greater difficulties of modeling social and cultural activity reflect a lack 
of data or a lack of agreed metrics. Likewise, they imply that the more limited predictive success of 
models of social and cultural activity reflects the more recent origins or the more limited funding of 
this type of inquiry compared to, say, forecasting the weather. 
 
Yet, there are more philosophical reasons to wonder whether models of social and cultural activity 
are ever likely to prove as useful as predictive tools or guides to decision-making as do models of 
natural phenomena. So, this paper discusses the philosophical distinctiveness of social and cultural 
activity and what it means for computational models. 
 
Social and cultural activity differs from natural phenomena in that people act for reasons; they act on 
their beliefs and desires, whether these are conscious, tacit, or unconscious. We might say that 
human actions reflect the actors’ interpretations of the world. When scholars explore social and 
cultural activity, therefore, they offer us interpretations of other people’s interpretations of the 
world. To model natural phenomena is to interpret something, but the object or domain of the 
model does not embody an understanding of the world. In contrast, to model a social and cultural 
domain is to model actions that instantiate the actors’ understanding of the world. 
 
The interpretive nature of the social and cultural world has several implications for how we think 
about and use computation models of it. First, all models inevitably reflect the prior theories (or 
interpretations) on which they are based. In evaluating them, we need to consider the reliability of 
these theories, and these theories are likely to be far more contentious and far less reliable when they 
are theories about social and cultural activity. Second, models generally just provide data of what will 
happen if people act in a certain way; they do not explain why people might act as they do. To 
explain social and cultural phenomena, we need narratives that locate actions and the beliefs that 
inform them in the appropriate contexts. Finally, the contextual nature of social explanations 
distinguishes them from those in the natural sciences in a way that suggests they are not capable of 
inspiring accurate predictions. 
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Making Sense of Computational Models 

This paper asks: what are the implications of anti-naturalism (that is, the interpretive nature 

of social science) for the ways in which we conceive and use computational models of different 

phenomena? Computational models are especially commonplace as ways of generating forecasts and 

predictions of natural phenomena, such as the weather and earthquakes. In addition, they are widely 

used to aid thinking and policy-making with respect to large-scale and aggregate social phenomena 

and especially the unintended consequences of a vast array of actions as exemplified by traffic flows 

or macro-economics. Finally, a small but growing number of scholars are suggesting that 

computational models might play a similar role in dealing with a wider range of social and cultural 

activity. This suggestion has become particularly prominent in the area of intelligence and security. 

It is all too easy to imagine that the differences between these domains – the natural world, 

unintended consequences, and social and cultural activity – are purely technical ones of the sort 

David Sallach discusses in his paper. Scholars often imply, for example, that the greater difficulties 

of modeling social and cultural activity reflect a lack of data or a lack of agreed metrics. Likewise, 

they imply that the more limited predictive success of models of social and cultural activity reflects 

the more recent origins or the more limited funding of this type of inquiry compared to, say, 

forecasting the weather. While such technical concerns may be relevant, there are also broader 

philosophical debates of direct relevance to the way in think of computational models of different 

types of phenomena. It is these philosophical debates that I will discuss in this paper. 

The paper begins, in its first section, with a discussion of one prominent philosophical view 

of social science – anti-naturalism – and the challenges it poses to social science. Anti-naturalists 

emphasize the philosophical differences between the natural and social sciences that follow from the 

intentional nature of human action. Next, in the second section of the paper, I explore the relevance 

of philosophical views such as anti-naturalism to methodological debates in social science. While the 
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discussion makes the case for bringing philosophical debates to bear on questions about techniques 

such as computational modeling, but it also tries to specify the role that philosophy might play in 

evaluating techniques such as computation modeling. Finally, in the third section of the paper, I 

consider the implications of anti-naturalism for the way we think about computational models of 

human cultural and social behavior. 

 

Naturalism and Anti-Naturalism 

A prominent faultline that continuously surfaces in debates over computational and other 

methods in social science is that between positivist or scientific approaches on the one hand, and 

postpositivist or critical approaches on the other (1998; Dahl et al. 2004; Tickner 1998; Oren 2006; 

Johnson 2006; Marsh and Savigny 2004). Alas, these debates are often conducted with little 

reflection on the philosophical underpinnings of the relevant approaches. In these debates, concepts 

like “positivist” and “postpositivist” are often associated with methodological choices – quantitative 

or qualitative – at least as much as philosophical commitments – naturalism or anti-naturalism. The 

resulting lack of philosophical reflection can result in a skewed understanding of the issues at stake 

in the debates over an adequate social science. One plausible example is Robert Albro’s suggestion, 

in his paper, that the military treats culture as a natural system because of their prior frames of 

reference and without due reflection. 

One problem with the usual faultline between positivism and postpositivism is the unhelpful 

way in which it muddles methodological and philosophical concerns. The term “positivism” is often 

used to fuse foundationalism and naturalism with quantitative methods. And the opposite term, 

“postpositivism”, is made to fuse postfoundationalism and anti-naturalism with qualitative and 

interpretive methods. Yet, things are not that simple. Some proponents of quantitative methods are 

naturalists who have doubts about positivist epistemologies. And some proponents of qualitative 
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methods appear to embrace a rather naïve empiricism in justifying their methods as ways of getting 

at facts that elude quantitative scholars. Perhaps we might break with the usual faultline between 

positivism and postpositivism in order to focus initially on philosophical issues, specifically the key 

distinction between naturalism and anti-naturalism. 

The dazzling achievements of the natural sciences have exerted an enormous pressure on the 

social sciences, including a powerful drive to model the latter on ontological and epistemological 

foundations associated with the former. Naturalism arises from the belief that similarities between 

the natural and social worlds are such that they should be studied in the same ways. Although 

naturalists might suggest, as Sallach does in his paper, that social systems are dramatically different 

from natural systems, they still believe that the same logic of inquiry applies to both. Initially, 

naturalists wanted mainly to preclude appeals to supernatural explanations: they argued that humans 

were part of nature and so amenable to empirical study, and they promoted a scientific method 

based on the rigorous collection and sifting of facts. Before long, however, naturalism became 

ensnared with the positivist conviction that the same logic of inquiry applies to both the natural and 

social sciences. Hence, today we can define naturalism as the idea that the social sciences should 

strive to develop predictive and causal explanations akin to those that are found in the natural 

sciences (Ayer 1967; Hempel 1942). In the classic statements of this view, the social sciences study 

fixed objects of inquiry that possess observable and, at least to some extent, measurable properties, 

such that they are amenable to explanations in terms of general laws, even if these general laws 

sometimes involve assigning probabilities to various outcomes. 

In the past few decades, however, philosophers of social science have typically come to 

favor anti-naturalism. The critique of naturalism has developed over the past half-century within a 

variety of philosophical traditions. Anti-naturalism has been most clearly and consistently articulated 

in the hermeneutic tradition, starting with the work of Wilhelm Dilthey (1976) at the turn of the 
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twentieth century and developed more recently by Hans-Georg Gadamer (2002) and Paul Ricoeur 

(1976). In the social sciences, Max Weber (1978) was one scholar who incorporated some 

hermeneutic themes.  He insisted that causal explanation in social science relied in large part on 

verstehen (interpretive understanding). And he insisted on the singularity of social explanation; they 

seek contextually specific causes of historical particulars. Nowadays anti-naturalism is also dominant 

in analytic philosophy. Its dominance therein began in the latter half of the twentieth century 

following the leads provided by Ludwig Wittgenstein (2001),43 Alasdair MacIntyre (1969), and 

Charles Taylor (1971). Yet more contributions to the rise of anti-naturalism have come from 

phenomenology (Husserl 1970), pragmatism (Dewey 1960; Rorty 1980), ethnomethodology 

(Garfinkel 1967), and cultural anthropology (Geertz 1973). 

Anti-naturalists argue that constitutive features of human life set it apart from the rest of 

nature to such an extent that the social sciences cannot operate as do the natural sciences. Whereas 

naturalists such as Sallach suggest these features make social science more complex than natural 

science, anti-naturalists insist that they make the model of the natural sciences inappropriate for the 

study of human social and cultural behavior. The relevant features of human action are that it is 

meaningful and historically contingent. Let us explore them in turn before then emphasizing that 

they apply as much to social scientists as to those who they study. 

I will begin with the meaningfulness of social life. Some naturalists hold a positivist 

epistemology according to which causal explanations are validated by their fit with observations, and 

meanings are irrelevant because they are not observable. These positions informed, for instance, 

classical behaviorism as propounded by John B. Watson (1924) and B. F. Skinner (1938). However, 

because this positivist epistemology is rarely espoused nowadays, I will concentrate on naturalists 

who would agree that human actions have meanings for those who perform them. It is widely 

                                                 
43 Wittgenstein has inspired numerous studies of the interpretive nature of social science. Examples include: Bevir 1999; 
Pitkin 1972; Winch 1958. 
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accepted today that agents act for reasons of their own, albeit that we sometimes take the reasons to 

be tacit, subconscious, or even unconscious, as opposed to explicit and conscious. What divides 

naturalists and anti-naturalists is the role they give to meanings in the explanation of actions and so 

of the explanation of social and cultural patterns arising from actions.44 Naturalists typically want 

meanings to drop out of these explanations. Philosophical exponents of naturalism argue, for 

instance, that to give the reasons for an action is merely to re-describe that action. If we want to 

explain an action, they add, we have to show how it – and so no doubt the reason for which the 

agent performed it – conforms to a general law couched in terms of social facts (Ayer 1967). 

Anti-naturalists refuse to let meanings and beliefs drop out of explanations in the human 

sciences. They argue that meanings are constitutive of human action. Hence, as Clifford Geertz 

(1973: 5) claimed, social science needs to be “not an experimental science in search of law but an 

interpretive one in search of meaning.” Anti-naturalists here uphold the centrality of meanings for 

social science on the grounds not only that actions are meaningful but also that these meanings are 

holistic. In this view, we can properly understand and explain people’s beliefs only by locating them 

in a wider context of meanings. Meanings cannot be reduced to allegedly objective facts since their 

content depends on their relationship to other meanings. The social sciences require a contextual 

form of explanation that distinguishes them from the natural sciences. So, anti-naturalism points to 

the importance of elucidating and explaining meanings by reference to wider systems of meanings, 

rather than by reference to categories such as social class or institutional position, and rather than by 

construing ideas or meanings as “independent variables” within the framework of naturalist forms 

                                                 
44 For our current purposes, we might put to one side the question of whether understanding is or is not a species of 
explanation. The dubious relevance of this question appears in the fact that naturalists and anti-naturalists alike are 
divided upon it. Indeed, I suspect the question is just a terminological one. When naturalists or anti-naturalists deny that 
understanding is a species of explanation, they are identifying explanation with the causal explanations found in the 
natural sciences. When they allow that understanding can be a type of explanation, they are adopting a broader concept 
of explanation (and perhaps also cause) such that to explain something is just to say why it is as it is. Perhaps the most 
insightful discussion of this issue is that by Donald Davidson. In a series of essays, Davidson (1980) argued that reasons 
were the causes of actions, that the relevant concept of cause was that found in our folk psychology, and that these 
causes might map onto physical causes of which we as yet did not have secure knowledge. 
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of explanation. It is worth adding that the dominance of meaning holism in contemporary 

philosophy – as observed even by skeptics (Fodor and LePore 1992) – suggests that naturalism 

might prove a difficult doctrine for political scientists to defend. 

Let me turn now to the historically contingent nature of human action. When naturalists try 

to let meanings drop out of their explanations, they are usually hoping at least to point toward 

classifications, correlations, or other regularities that hold across various cases. Even when they 

renounce the ideal of a universal theory or law, they still regard historical contingency and contextual 

specificity as obstacles that need to be overcome in the search for cross-temporal and cross-cultural 

regularities. Greg Luebbert, for example, discusses a number of discrete national case studies but his 

ultimate aim is to find “a single set of variables and logically consistent causal connections that make 

sense of a broad range of national experiences” (Luebbert 1991: 5). Naturalists typically search for 

causal connections that bestride time and space like colossi. They attempt to control for all kinds of 

variables and thereby arrive at parsimonious explanations. But they can do so only by freezing 

history. 

In stark contrast, anti-naturalists argue that the role of meanings within social life precludes 

regularities standing as explanations. That said, we need to be careful how we phrase what is at issue 

here. Anti-naturalists have no reason to deny that social scientists might offer general statements 

that cover diverse cases. Rather, they typically object to two specific features of the naturalist view of 

generalizations. First, anti-naturalists deny that general statements constitute a uniquely appropriate 

or powerful form of social knowledge. They consider statements about unique and contingent 

aspects of particular social phenomena to be at least as apposite and valuable as general statements. 

In their view, generalizations can deprive our understanding of social phenomena of what is most 

distinctly and significantly human about them. Second, anti-naturalists reject the claim that general 

statements can provide explanations of features of particular cases: just as we can say that X, Y, and 
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Z are all red without explaining anything else about them, so we can say that X, Y, and Z are all 

democracies but that does not explain any other feature they might have in common. Anti-

naturalists oppose explanations of human actions in terms of trans-historical generalities because 

they conceive of human action as inherently contingent and particular. Human life is characterized 

by contingency, temporal fluidity, and contextual specificity. Hence we cannot explain social 

phenomena adequately if we fail fully to take into account both their inherent flux and their concrete 

links to specific contexts. The social sciences require a historical and contingent form of explanation 

that distinguishes it from the natural sciences. 

So, anti-naturalists emphasize the meaningful and contingent nature of human life. These 

emphases apply to social scientists as much as to the people they study. Social scientists come to 

hold particular beliefs against the background of contingent traditions. Naturalists may treat the 

situatedness of the social scientist as an obstacle to be overcome in the pursuit of proper knowledge. 

They ask social scientists to try to abstract themselves from their historical perspectives. They want 

social science knowledge to present itself as divested of particular theories and prejudices. In 

contrast, anti-naturalists usually deny the very possibility of abstracting ourselves from our prior 

webs of belief. They suggest that social science always takes place from within particular linguistic, 

historical, and ethical standpoints. They questions asked and the concepts formed by social scientists 

are always informed by their existing webs of belief and their assumptions. 

The combined recognition of, on the one hand, the situatedness of the social scientist and, 

on the other hand, the meaningfulness of social life introduces a dialogical dimension to social 

science. Naturalists typically construe explanation as the product of a unidirectional subject-object 

relationship. Their neglect of the constitutive role of meanings leads them to see the social scientist 

as the only agent involved in crafting explanations: the objects of social science are just that – 

passive objects to be studied. In contrast, anti-naturalists often conceive of explanation as the 
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product of a kind of dialogue between social scientists and those they study. Social science generally 

involves a subject-subject interaction in which the scholar responds to the interpretations or 

meanings of the relevant social actors. An encounter with the beliefs or meanings of social actors 

always has the potential to send out ripples through a scholar’s own beliefs, altering their 

understanding of, say, their research agendas, the traditions in which they work, or their normative 

commitments. 

 

Philosophy and Method 

Anti-naturalists argue that: actions are meaningful, meanings are contingent and liable to 

change over time, and these facts apply to the actions and beliefs of social scientists as well as those 

whom they study in a way that points to dialogical modes of inquiry. What are the implications of 

this anti-naturalism for the way we think about computational models? As I mentioned earlier, anti-

naturalism is often confusingly fused with a commitment to qualitative methods. It should not be. 

There is no logical reason to fuse positivism with quantitative methods and anti-naturalism with 

qualitative methods. Indeed, more generally still, no philosophical position legislates strictly for or 

against the use of any methodological technique. 

To understand the implications of anti-naturalism for computational models, we must first 

grasp the relationship of philosophy to methodology. The problem here is that approaches to social 

science are strange beasts. Most contain a jumble of philosophical theories, methodological 

techniques, and empirical topics. While the relevant theory, techniques, and topics may have some 

ties to one another, they definitely do not logically entail each other. For example, social scientists 

often talk about behavioralism as if it were a coherent whole, but really there are no necessary ties 

between positivist theory, large-N statistical techniques, and behavioral topics. 
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While philosophical theories do not legislate for or against particular techniques, it seems far 

more reasonable to expect them to help us to understand the nature of the data that techniques 

generate and so to help us judge the appropriateness of any given technique for the problems social 

scientists address. Whether we call it “philosophy” or something else such as “meta-methodology”, 

we should promote steady and deliberate theoretically reflection on what methods are appropriate to 

the study of what aspects of social and cultural behavior. Philosophy helps to clarify what kind of 

knowledge and what kind of explanations fit the kinds of objects that are the concern of social 

science. 

Anti-naturalism does not limit social scientists to textual readings and small-scale 

observations; it does not exclude survey research, quantitative studies, and computational models. 

To the contrary, anti-naturalists can construct their interpretations using data generated by various 

techniques. They can draw on participant observation, interviews, questionnaires, mass surveys, 

statistical analysis, and computational models as well as reading memoirs, newspapers, and official 

and unofficial documents. Anti-naturalism does not prescribe a particular methodological toolkit for 

producing data. Instead, it prescribes a particular way of treating data of any type. It implies that 

social scientists should treat data in ways consistent with the meaningful and contingent nature of 

human action. They should treat data as evidence of the historically-situated beliefs embedded in 

actions and practices. 

The importance of philosophy to methodology should now be clear. Only when we know 

what kinds of knowledge and explanation are apt for social science can we intelligently decide what 

methods are best suited to producing them and what any given method has to contribute. Whether 

we believe any method to be apt in any given instance necessarily depends on our underlying 

philosophical views. The only question is whether we consciously aware of these views and so open 

to trying to improve them, or whether we risk being confused. Again, social scientists should not let 
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the undoubted importance of methodological rigor obscure what are prior philosophical issues 

about the adequacy of the commitments entailed by any claim that any method is an appropriate 

means of generating knowledge about any given type of object. Discussion of methods and their 

utility are profoundly impoverished by a lack of reflection on the relevant philosophical 

assumptions. Many social scientists have worried about hyperfactualism – the collection of data 

without proper theoretical reflection. Today, they might worry at least as much about 

hypermethodologism – the application of methodological techniques without proper philosophical 

reflection. 

What, then, are the philosophical implications of anti-naturalism for the way in which social 

scientists should think about data and models? I will highlight three main implications, loosely 

corresponding respectively to the anti-naturalist emphases on the situatedness of the scholar, the 

meaningfulness of action, and historical contingency. 

Consider, first, the situatedness of the scholar. Anti-naturalism suggests that claims to 

knowledge are inherently theory-laden. People’s accounts of the world are never straightforwardly 

verifiable or falsifiable by reference to allegedly given facts. What would have to be the case for a 

proposition to be true (or false) depends on the other propositions we hold true. People can 

logically reject or retain any proposition in the face of any evidence provided they make appropriate 

changes to other propositions they hold true. No proposition ever confronts the world in splendid 

isolation. Evidence only ever confronts overarching webs of belief, and even then the evidence is 

saturated by theories that are part of the relevant webs of belief. Fortunately to insist on the theory-

laden nature of knowledge is not to say it is groundless. Many philosophers offer alternative 

accounts of justified knowledge based on comparative approaches to theory choice. They argue that 

a theory or other belief is justified because it is better than the others available to us. For my 

purposes now, however, the important point is that no method – computational models, regression 
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analyses, etc. – can conclusively justify the explanatory claims, predictions, or data they generate. 

Methods just create data, the validity of which is still open to debate. The validity of both data and 

causal claims depends on comparisons between rival bundles of facts, theories, and assumptions. 

A second implication of anti-naturalism derives from its emphasis on the meaningful nature 

of action. Anti-naturalism leads here to a linguistic constructivism according to which people not 

only make the social world by their actions; they also make the meanings and beliefs on which we 

act. People’s beliefs, concepts, actions, and so practices are products of particular traditions or 

discourses. Social concepts (and social objects), such as “bureaucracy” or “democracy”, do not have 

intrinsic properties and objective boundaries. They are artificial inventions of particular languages 

and societies. Their content varies with the wider webs of belief in which they are situated. Crucially, 

this linguistic constructivism implies that social concepts rarely (if ever) refer to natural kinds. It 

undermines attempts to ascribe to social objects an essence that determines their other properties 

and the effects they have. Linguistic constructivism implies that social concepts are pragmatic. Social 

life consists of meaningful activity. When social scientists use aggregate concepts to refer to a set of 

actions, the decision about which actions to include under the concept is a pragmatic one made in 

accord with their purposes. 

The third implication of anti-naturalism stems from recognition of the historical contingency 

of beliefs and actions. For a start, because people act on webs of belief, social scientists can properly 

explain people’s beliefs (and so actions) only by locating them in the context of the relevant web. 

Social explanations should elucidate beliefs by showing how they relate to one another, not by trying 

to reduce them to categories such as social class or institutional position. In addition, the historical 

contingency of these webs of belief implies that social scientists cannot explain why people hold the 

webs of belief they do solely by reference to people’s experiences, interests, or social location. To 

the contrary, even people’s beliefs about their experiences, interests, and social location will depend 
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on their prior theories. Thus, a social scientist can explain why people hold the webs of belief they 

do only by reference to the intellectual traditions that these people inherit. Even the concepts, 

actions, and practices that seem most natural to us need to be explained as products of a contingent 

history. Social explanation contains an inherently historicist moment. This historicism means, finally, 

that correlations, classifications, and models are not properly speaking explanations at all. They are 

just further types of data that we will accept in so far as we trust the methods by which they are 

produced. Social scientists can explain such data only by appealing to contextual and historical 

narratives. 

 

Interpreting Computational Models 

Anti-naturalism has several implications for the ways in which we should think about data 

and models. In the rest of this paper, I want to point to some of more specific implications for the 

roles that computational models might play in policy-making. Here too I highlight three main 

implications, loosely corresponding respectively to the anti-naturalist emphases on the situatedness 

of the scholar, the meaningfulness of action, and historical contingency. 

First, all models inevitably reflect the prior theories (or interpretations) on which they are 

based. When policy makers use or evaluate computational models, they should consider the 

reliability of these theories. Of course, all models, whether of natural or social phenomena rest on 

theories that are open to question. However, the theories embedded in models of social and cultural 

behavior are likely to be far more contentious and far less reliable than those embedded in models of 

natural phenomena. The reasons for being more suspicious of social theories are, moreover, as 

much philosophical as they are practical. 

In particular, models of human activity almost inevitably depend on theories that reify 

human activity in a way that we know is false. These models almost inevitably lead to simplifications, 
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albeit simplifications that might sometimes aid decision-making. Here, models of cultural and social 

behavior generally require theoretical assumptions that reify activity by implying that people of a 

certain type or people in certain situations will act in a given way. That is to say, these models 

embody theories that suggest certain objective social facts will reliably lead to the persistence of 

patterns of action. The theories behind these models highlight or postulate patterns among actions 

and beliefs only by obscuring differences that may be or may become extremely important in other 

contexts or in later settings. The worry is that if policy makers overly privilege the models, they may 

think – as Jessica Turnley in her paper suggests they do – that the models are uniquely correct 

descriptions of the world; they may ignore the complexities and diversities that the models obscure, 

or the possibility that such complexities and diversities may arise in the future. 

In particular, when a model projects a pattern of human activity, policy makers should 

generally consider whether the model hides differences in the nature of the action and the beliefs 

inspiring the action. They should consider the possibility that different beliefs just happen to have 

produced similar actions, or that different webs of belief just happen to have shared some similar 

features. Some patterns arise when people act in similar ways for very different reasons. For 

example, there is a well-established (if rapidly declining) correlation in Britain between being 

working class and voting for the Labor Party. The worry is that this correlation may lead modelers 

and policy makers to think in terms of a monolithic pattern of activity. Yet, different working-class 

people vote Labor for different reasons. Some may vote Labor because they believe that they are 

working class and Labor will promote the interests of the working class. Others may vote Labor 

because they think they are working class, do not think Labor will promote the workers’ interests, 

but nonetheless identify emotionally with the symbolism of the Labor Party. Others may believe 

(perhaps mistakenly) that they are middle class and yet vote Labor because they see themselves as 

committed to values such as social justice. Patterns also arise – especially in speech, beliefs, and 
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attitudes – because people have webs of belief that have some abstract features in common but are 

very different in their specifics. For example, suppose that many people from a particular nationality 

or religion say they support a strong state. Modelers and policy makers might think that they have 

found a monolithic pattern. They should be aware, however, that different members of the group 

may mean different things when they use the word “state” or may have very different reasons for 

advocating a strong state. Some may think their state is unable to defend the rule of law and just 

want it to do so. Others may want the state to impose stronger moral norms on society. The general 

point is, of course, that whenever a model hides differences that would appear if we asked whether 

different beliefs happen to have produced similar actions, or whether different webs of belief 

happen to include some similar features, then the model is likely to be particularly misleading as a 

guide to policy. 

Like the situatedness of the scholar, the meaningfulness of action has implications for the 

roles that computational models might play in policy-making. Policy makers should remember that 

correlations and the like are not explanations. Explanations in the social sciences require narratives 

that reveal the meaningful nature of action and that relate meanings and beliefs to one another in 

webs. While computational models can provide data or insights that contribute to such narratives, 

policy makers should not become too preoccupied with them or too reliant upon them. Instead, 

policy makers should recognize that computational models are just further data to be included in a 

narrative, or at most themselves narratives about how people have acted or will react given their 

beliefs and desires. No matter what rigor or expertise modelers bring to bear, all models we can do is 

tell a story and judge what the future might bring. 

To explain social and cultural phenomena, policy makers need narratives that locate actions 

and the beliefs that inform them in the appropriate contexts. Historical and fictional narratives 

characteristically relate actions to the beliefs and desires that produce them. Narratives depend here 
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on conditional connections that are not necessary or arbitrary: it is because they are not necessary 

that social science differs from the natural sciences, and yet it is because they are not arbitrary that 

social scientists can use them to explain actions and practices. These conditional connections exist 

when the nature of one object draws on the nature of another. The relevant objects condition each 

other, so they do not have an arbitrary relationship. But neither object follows inexorably from the 

other, so they do not have a necessary relationship. Social knowledge depends on telling stories that 

postulate just such conditional connections between beliefs, actions, practices, and their contexts. 

Practitioners should experiment with multiple stories that reveal new aspects of situations; they 

should hear different voices, talk to one another, and develop tentative and evolving narratives. 

Even when computational models provide data on possible outcomes, policy-makers should 

experiment with different ways of narrating these outcomes, and they should explore alternative 

stories – based on alternative theories – that suggest different outcomes. One valuable role of 

models might be precisely to increase the range of stories that analysts and decision-makers 

consider. 

Indeed, I would go a step further. The meaningfulness of action suggests that policy makers 

would be well advised at least to supplement computational models with data that provides a richer 

picture of actors’ beliefs and the ways in which these beliefs coalesce in webs. Here, anti-naturalism 

might have some heuristic implications for data collection, prompting a greater emphasis on 

qualitative methods. For example, suppose that the data provided by comparing and codifying the 

formal constitutional documents of democracies leads social scientists to attribute certain beliefs to 

their political leaders and then to build models based on the prior theory that democratic leaders 

hold these beliefs.45 As we have seen, because the data encourages social scientists to reify common 

                                                 
45 I am thinking of the literature on the idea of a democratic peace. For a rather partisan bibliography see 
http://www.hawaii.edu/powerkills/BIBLIO.HTML. For an example of the way anti-naturalism might prompt 
skepticism, see Oren (2003).  

 124 

http://www.hawaii.edu/powerkills/BIBLIO.HTML


 

patterns, it may elide differences between people. Thus, social scientists and policy makers might 

consider supplementing such data and models with detailed studies of the beliefs of the relevant 

people using methods such as textual analysis, participant observation, and in-depth interviews. 

Much contemporary social science ignores, or even denigrates such methods, preferring abstract 

models. While anti-naturalism does not require the use of any type of data or method, it does redress 

the balance, reminding social scientists and policy makers of the value of the qualitative analyses at 

least as a supplement to other types of data and methods. 

Let us turn, finally, to the implications of contingency for the roles that computational 

models might play in policy-making. Anti-naturalism suggests that human activity is a series of 

contingent (perhaps even accidental) appropriations, modifications, and transformations from the 

old to the new. Again, change occurs contingently as people reinterpret, modify, or transform an 

inherited tradition in response to novel circumstances or other dilemmas. Moreover, this 

contingency implies that human life is radically open in that what happens is always contestable. 

There are always innumerable ways in which an action, practice, or traditions may be reinterpreted, 

transformed, or overpowered. We should be suspicious of attempts to portray any social practice as 

unified or change as based on a uniform consensus. 

 Crucially, the contingent nature of social life undermines the very possibility of prediction – 

defined in contrast to the looser idea of informed conjecture. The contextual and historical nature of 

social explanations precludes there giving rise to the kinds of accurate predictions associated with 

the natural sciences. Because social phenomena are not natural kinds, social scientists can not 

explain or predict social life by appealing to uniform laws. Social life is a product of the ways in 

which people act so as to modify inherited traditions and practices, and the ways in which they do so 

are open-ended and so not amenable to prediction. Because traditions and practices are not fixed, 

we cannot know in advance how people will develop their beliefs and actions in response to any new 
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situation or dilemma. Therefore, a social scientist cannot strictly predict how behave, no matter what 

they know about their past behavior or what they know about how similar people have behaved. 

Whatever limits social scientists build into their predictions, people could arrive at new beliefs and 

actions outside those limits. Social scientists cannot make predictions. All they can offer are 

informed conjectures that seek to explain practices and actions by pointing to the conditional 

connections between actions, beliefs, traditions, and dilemmas. Their conjectures are stories, 

understood as provisional narratives about possible futures. 

It is true that some naturalists have attempted to rebuff anti-naturalism here by equating 

social science with the study of systems or structures that cannot be understood as the intended 

consequence of a single action. Traffic jams are often evoked as examples of such structures. But 

traffic jams and other such structures scarcely undermine anti-naturalism. Most of what we want to 

know about traffic jams comes down to intentional action. To explain why people are driving when 

and where they are, we want to know whether they intend (consciously or not) to go to work, to a 

sports game, shopping, visiting relatives, and so on. Even more generally, we might explore the 

wider webs of belief that constitute the social practices within which these intentions are embedded. 

Why do people believe that driving to work is better than using public transportation? Why don’t 

they take political action to increase public investment in transportation infrastructure? All such 

questions are questions about meaningful intentionality. If an account of traffic jams or other such 

structures really did ignore intentionality, it would be a very thin and inadequate account. It could 

tell us only in purely physical terms that the traffic jam arose because a given number of people tried 

to drive cars along a stretch of road of given dimensions. It could tell us nothing about the actions 

that led to these physical consequences; it could not tell us why these people were driving their cars 

or why the road system is as it is. 
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Conclusion 

My main aim in this paper has been to raise awareness of the importance of philosophical 

issues for our understanding of the nature, use, and limits of computational models. The references 

include a number of the most important philosophical so that the reader can further explore and 

reflect on these issues. It seems to me that the majority of philosophers today hold to some form of 

the anti-naturalist view that human life differs from the natural world in that humans have a capacity 

for acting for reasons of their own. It also seems to me that this anti-naturalism reflects the 

common-sense of our age. After all, I expect that if I asked you why you are attending this 

workshop, you would answer me by giving your reasons – you would refer to your beliefs and 

desires and their place in a historical narrative about your life and its context. My other main aim has 

thus been to explore the implications of anti-naturalism for our understanding of the nature, use, 

and limits of computational models. I have suggested here that there are philosophical reasons to 

wonder whether models of social and cultural activity are ever likely to prove as useful as predictive 

tools or guides to decision-making as do models of natural phenomena. The point here is not that 

anti-naturalism repudiates computational models (or, for that matter, any other methodological 

technique); it does not. The point is, rather, that anti-naturalism undermines some of the 

assumptions that are widespread among scholars attempting to develop computational models of 

human social and cultural behavior. Anti-naturalism suggests, more specifically, that: i) models rely 

on theories that are almost always overly-simplified reifications; ii) the reified patterns embedded in 

and offered by models can be properly explained only by narratives; and iii) models can never guide 

decisions by offering predictions; they are at most conjectures about possibilities that policy makers 

might take into account in making a decision.  

Given that much of my argument has been general, it is important to bring it down to earth 

with a thud. Most policy advisers will accept that the arts of storytelling and decision-making are 
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integral parts of their work. Practitioners often use phrases such as: “Have we got our story 

straight?”, “Are we telling a consistent story?”, and “What is our story?”. Advisors often explain past 

events to justify recommendations for the future. Anti-naturalism makes sense of the kind of 

knowledge they are seeking and using to make decisions. In short, a stress on interpretation and 

storytelling is not an example of academic whimsy. It reminds policy-makers of what they do, and 

explains why doing that remains a valuable corrective to an over-reliance on formal methods and 

techniques such as computational models. 
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Abstract:    
 
Within the last two decades, Modeling and Simulation (M&S) has become the tool of choice to 
investigate the behavior of complex phenomena. Successes encountered in “hard” sciences are 
prompting interest to apply a similar approach to Computational Social Sciences in support, for 
example, of national security applications faced by the Intelligence Community (IC). This 
manuscript attempts to contribute to the debate on the relevance of M&S to IC problems by 
offering an overview of what it takes to reach “predictability” in computational sciences.  
 
Even though models developed in “soft” and “hard” sciences are different, useful analogies can be 
drawn. The starting point is to view numerical simulations as “filters” capable to represent 
information only within specific length, time or energy bandwidths. This simplified view leads to the 
discussion of resolving versus modeling which motivates the need for sub-scale modeling. The role 
that modeling assumptions play in “hiding” our lack-of-knowledge about sub-scale phenomena is 
explained which leads to discussing uncertainty in simulations. It is argued that the uncertainty 
caused by resolution and modeling assumptions should be dealt with differently than uncertainty due 
to randomness or variability. The corollary is that a predictive capability cannot be defined solely as 
accuracy, or ability of predictions to match the available physical observations. We propose that 
“predictability” is the demonstration that predictions from a class of “equivalent” models are as 
consistent as possible. Equivalency stems from defining models that share a minimum requirement 
of accuracy, while being equally robust to the sources of lack-of-knowledge in the problem. 
Examples in computational physics and engineering are given to illustrate the discussion. 
 
1. Introduction 

 
With the convergence, in the past two decades, of TeraOPS46 computing, cheap memory, mature 
algorithms, fast-access databases and seamless graphics, “hard” sciences have turned to Modeling 
and Simulation (M&S) to investigate the behavior of complex systems. At the U.S. Department of 
Energy and since 1995, the Advanced Scientific Computing (ASC) Program has been tasked with 
the development and implementation of the predictive capability required to assess the performance, 
safety and reliability of our nuclear deterrent without resorting to full-scale testing [1]. Other 
examples of M&S programs that support high-consequence decisions include modeling the 
evolution of global climate; understanding the effects of a terrorist nuclear explosion in urban 
environment; and proposing efficient response scenarios to face epidemic outbreaks. In industry, 
manufacturers routinely resort to numerical models to design engineered systems, and perform 
performance certifications or safety assessments such as flutter stability in the aerospace industry or 
crash worthiness in the automotive industry [2]. These successes have, more recently, prompted 
interest within the Intelligence Community (IC) that is expressing interest in the capability to 

                                                 
2 One TeraOPS is equal to 10+12 floating-point operations (such as a multiplication) per second. 
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understand social trends and predict behaviors through M&S with the ultimate goal of better 
anticipating threats to our national interests. 
 
This manuscript attempts to contribute to the debate on the relevance of M&S to IC applications 
and, more broadly, the emergence of Computational Social Science (CSS), by offering a brief 
overview of what it takes to reach “predictability” in computational sciences. Even though “soft” 
sciences study phenomena and develop models that are different from those of disciplines such as, 
for example, computational physics, useful analogies can be drawn. Our goal is to propose a 
practical definition of “predictability” so that it does not turn into an unattainable myth. 
 
In this work, the numerical simulations are viewed at a conceptual level as “filters” that represent 
information only within specific length scales, time scales or energy bandwidths. This simplified 
view leads to the discussion of resolving versus modeling. Performing numerical simulations capable 
of resolving all phenomena of interest is clearly not possible because it would ultimately face 
fundamental barriers and uncertainty principles such as those put forth by Heisenberg in 1927. To 
alleviate the lack-of-resolution in numerical simulations, sub-scale modeling becomes a necessary 
“evil.” While bringing closure to the modeling effort, the introduction of a feedback mechanism to 
account for sub-scale information introduces arbitrary choices and assumptions. Two important 
questions of “predictability” become, first, assessing the extent to which these assumptions are 
warranted; and, second, understanding their effects on predictions. 
 
These questions lead to the need to generalize the concept of uncertainty to numerical models. In 
the context of M&S, uncertainty can be described using metrics of entropy, a concept that was first 
introduced by Clausius in 1865. Because the origin and nature of this uncertainty may be different 
from conventional variability and randomness, it is argued that assessing predictive capability solely 
in terms of prediction accuracy makes little-to-no sense. How valuable is it, for example, to 
demonstrate that predictions are 3% accurate when some of the models used in the numerical 
simulation are based on unwarranted or, worse, incorrect assumptions? 
 
We propose, instead, to define “predictability” based on understanding the trade-offs between 
fidelity-to-data, consistency of numerical predictions for classes of “equivalent” models, and 
robustness to lack-of-knowledge. Based on a broad definition of uncertainty that introduces little-to-
no practical limitation, we demonstrate that the fidelity-to-data and robustness of a model cannot be 
simultaneously improved. Likewise, it is shown that increasing robustness comes at the expense of 
making less consistent predictions with a class of equivalent models. It is argued that assessing these 
trade-offs, and communicating them efficiently to stakeholders, is precisely the mechanism by which 
numerical simulations can support decision-making. Believing, on the other hand, that a predictive 
capability can be achieved by relying on the calibration of models to the available physical 
observations is nothing but a myth. The definition of “predictability” that we arrive at is not based 
solely on accuracy, even though it remains an essential ingredient. We propose that “predictability” 
is the ability to make as-consistent-as-possible predictions from a class of equivalent models. 
Equivalency stems from the fact that all models included in the class share a minimum requirement 
of accuracy while being equally robust to the sources of lack-of-knowledge in the problem. 
 
The significance of the above definition is that it shifts the problematic away from the sterile, yet, 
often encountered, discussion of which model is “correct.” We argue that it does not matter to 
know which model may be more appropriate. What is important is to show that, no matter which 
option is considered, the predictions made with equivalent models are consistent. Confidence 
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ultimately comes from showing that a class of equally accurate and equally robust models, that may 
include very different models and numerical options, produces consistent predictions. 
 
The manuscript is organized as follows. Section 2 addresses what it may take to be “predictive.” The 
trade-offs between resolving the information content of a given problem and modeling it are 
discussed in section 3. The third section also emphasizes that the need to model the unresolved 
information unavoidably introduces modeling uncertainty, which leads to assumption-making. In 
section 4, uncertainty in computational sciences is discussed with focuses on, first, exploring the 
diversity of uncertainty encountered and, second, briefly explaining the implication that lack-of-
resolution has on numerical predictions. Finally, section 5 illustrates the concept of trading-off 
accuracy, robustness to lack-of-knowledge, and consistency of predictions using an application to 
the verification of a computer code. 
 
2. A Brief Discussion of What Makes a “Predictive” Simulation 
 
There are two basic drivers for the development of models in computational sciences and 
engineering. One objective can be to describe a phenomenon without necessarily attempting, or 
needing, to understand it with precision. This would be the case when one does not need to 
understand where the phenomenology originates from, how it “works,” how repeatable it may be, 
and what are the actions that influence and control it. The early models of Greek astronomy 
(Ptolemy,  300 BC) are an example of modeling activity that attempted to describe the position of 
planets and stars without developing an accurate understanding of orbital dynamics. 
 
Another historical example is illustrated in Figure 1 that reproduces the regression fit published in 
the 1929 seminal paper of Edwin Hubble in his attempt to discover fundamental laws of the 
cosmology that govern the Universe [3]. The straight line is a simple regression fit between the 
distance and velocity of various stellar objects. This empirical model lead to a revolution in our 
understanding of celestial dynamics even though the slope shown on the figure was later found to be 
incorrect by a factor of 10! 

 

Figure 1. Hubble’s empirical model of star velocity versus distance. (From Reference [2].) 
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The second driver for M&S is to understand the phenomenon observed such that its evolution, 
assuming, without loss of generality, that this phenomenology is dynamic, can be predicted and 
controlled. Mechanisms that give rise to the phenomenon must be understood and described with 
sufficient accuracy, sources of variability must be assessed, and factors that influence and control the 
phenomenon must be known. Clearly the development of a science-based predictive capability falls 
in this second category. Predictive models rely on the best-available knowledge of “how something 
works,” not just an empirical description of observations or measurements. Predictive models must 
also push the boundary of our understanding over multiple time scales, space scales and, possibly, 
energy scales for reasons that are discussed in section 3. 
 
Figure 2 illustrates a “predictive” capability. Physical measurements of sea surface variability by the 
European satellite Topex/Poseidon (top half figure) are compared to numerical simulations 
performed with the POP model at the Los Alamos National Laboratory (bottom half figure). To be 
capable to predict small variations of sea surface, where the elevation (a few centimeters) is “small” 
relative to the size of the computational domain (thousands of kilometers), several phenomena must 
be described and integrated together. These mechanisms include, and this list is not meant to be 
exhaustive, the chemistry and dynamics of the ocean, atmosphere, and ice caps. Likewise, important 
couplings include representing the effect of irradiative transfers through the atmosphere and 
representing the transfers of chemical species, materials, and energy (or temperature) between the 
sub-models of ice cap and ocean. 

 
Figure 2. Measurement (top) and prediction (bottom) of sea surface variability. 

 
Clearly, the discussion proposed in this manuscript addresses this second modeling approach where 
a science-based predictive capability is sought as opposed to the empirical description of a 
phenomenology. The following bullets discuss, in broad terms, some of the trends currently 
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observed in attempts to develop science-based predictive capabilities for “hard” sciences such as 
computational physics and engineering: 
 
 Represent the geometry of the computational domain with the highest possible level of fidelity. 

Neglect “features” that may not have any significant effect on predictions. Include, however, 
those that may influence the phenomena being modeled even if this influence only manifests 
itself at the sub-scale level. (The extent to which “features” must be included, of course, depends 
on whether feedback mechanisms exist to “link” the various scales over which information gets 
propagated in the simulation.) 

 
 Implement models and algorithms that describe the behavior of various elements in the 

problem, based on first-principle physics as opposed to empirical or phenomenological 
descriptions. In computational physics and engineering, these basic elements include the 
materials; initial conditions that start the simulation; boundary conditions at edges of the 
computational domain; energy dissipation mechanisms, whether they are real or artificial; source 
terms that contribute various forms of energy to, or take away energy from, the problem; and 
the conservation laws or equations-of-motion that describe the articulation between these 
various elements. 

 
 Couple the representations of phenomena being modeled in the application. Integrating together 

several packages may be rendered necessary to account for different effects at play in the 
problem. The above illustration of coupling models of ocean, atmosphere, and ice caps is an 
example. It may also be needed to represent various phenomena with their respective, 
appropriate modeling approaches. For example, one may want to solve the Navier-Stokes 
equations of fluid dynamics to simulate the aerodynamics of an airfoil while resorting to 
molecular dynamics simulations to inform on flow properties within the elusive boundary layer 
nearest to the surface of the airfoil, properties that the conventional equations of fluid dynamics 
have difficulty resolving. The main difficulty in integrating different phenomena is to avoid 
“distorting” information that gets transmitted from one model to another. 

 
 Propagate information over multiple and potentially vastly dissimilar length scales, time scales or 

energy spectra. Bridging the gap between the information content sought at the macroscopic 
level, where predictions are needed to support decision-making, and information expressed at 
the sub-scale is necessary to provide closure of the modeling effort. In computational physics 
and engineering, it would mean bringing closer the continuum (macroscopic) conservation laws 
and micro-scale models, potentially, all the way to molecular dynamics and inclusion of 
relativistic or quantum effects. Attempts are currently made to develop algorithmic strategies 
capable to propagate information back-and-forth, across dissimilar spatial or temporal scales. 
This is a challenging task because the representation of information appropriate at one given 
scale may differ from what is appropriate at another scale. 

 
 Propagate uncertainty through numerical simulations to quantify the confidence that decision-

makers may place in predictions. Uncertainty is propagated from its identified sources, such as 
parameters of a model, to predictions. Doing so may require access to formidable computational 
resources if the uncertainty space to be explored is vast in size and broad in scope. This task is 
further complicated by the fact that uncertainty may come in many different “flavors,” from 
variability and randomness, to conflicting or non-specific information, to ignorance and lack-of-
knowledge. Separating randomness from epistemic uncertainty, understanding which sources of 
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uncertainty in the problem can be reduced and which cannot, and implementing appropriate 
techniques for the propagation of each type is, to a great extent, still a matter of open research. 

 

Needless to say that fully implementing these tendencies of science-based “predictability” would 
require several orders of magnitude more computing power than the resources available for 
“production” work, that is, what is currently accessed for routine or every-day computing. These 
requirements are pushing the technology from TeraOPS computing to novel architectures and 
programming techniques capable to sustain PentaOPS and ExaOPS computing.47 This aspect of 
“predictability,” even though it is critical to the successful deployment of a predictive capability, is 
no further discussed in this manuscript.48 
 
3. The Activities of Resolving, Modeling, and Assumption-making 
 
In this section, we turn our attention to the description of the process that is at the core of any M&S 
activity and consists in “balancing” the ability to resolve, hopefully, most phenomena of interest in 
the numerical simulation with the requirement to model some of them. We have seen that the so-
called “first-physics” approach to M&S seeks to develop science-based models capable of describing 
information at the pertinent space scales, time scales, and energy spectra for as many phenomena as 
reasonable possible. To understand what this principle implies at a conceptual level, numerical 
simulations can be idealized as simple “filters” that carry information only within specific length, 
time or energy bandwidths. 

                                                 
47 TeraOPS, PentaOPS, and ExaOPS are units of computing power that define a peak speed in terms of number of 
floating point operations (such as a multiplication) sustained every second. They correspond to 10+12, 10+15, and 10+18 
floating-point operations per second, respectively. 
48 In lieu of a technical discussion, anecdotes are provided, here, to illustrate what this computing power represents. 
Imagine, first, that everyone in the World could be provided with a pocket calculator and could perform one floating-
point multiplication per second, which, as far as humans go, represents computing at a rather fast pace. How long would 
it take to compute what a one-PentaOPS machine computes every second? Would it take two seconds, two hours or two 
days? A second anecdote provided for illustration is to estimate how quickly a one-PentaOPS computer could read the 
142 Million books (estimated) of the U.S. Library of Congress? Answers are provided at the end of the manuscript. 
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Figure 3. Conceptual view of a simulation as a low-pass “filter” of energy or information. 

 

Figure 3 illustrates this concept where the energy or information content that a simulation can 
capture, labeled “” on the vertical axis, is depicted as a notional blue curve as a function of 
resolution, labeled “1/x” on the horizontal axis.49 The figure suggests the existence of a low pass-
band region within which information is fully resolved by the computational discretization, followed 
by another region where the energy content rapidly falls with increasing resolution. It means that 
numerical simulations are capable to resolve information up to given cut-off, spatial or temporal, 
frequencies beyond which the phenomena being studied must be modeled. 

 

This naturally leads to the discussion of resolving versus modeling. Performing a numerical 
simulation capable of resolving all phenomena of interest is clearly not possible. Doing so would 
ultimately face fundamental barriers and uncertainty principles such as those put forth by 
Heisenberg in 1927. One must, however, also recognize that information always “leaks out” of 
macroscopic scales towards the micro-scales, as suggested in Figure 4. To alleviate the lack-of-
resolution in numerical simulations, and bring closure to the modeling effort, sub-scale modeling 
becomes a necessary “evil.” Sub-scale models introduce feedback mechanisms such that the fine-
granularity energy or information that cannot be resolved on the basis of the computational 
discretization alone can, instead, be modeled and accounted for in the numerical simulation. In 
short, sub-scale models stop the “leakage” of information and feed it back to the next level up. 

                                                 
49 In computational physics and engineering, the symbol “x” typically represents a characteristic size of the mesh 
discretization. By extension it is used, here, to symbolize the level of resolution with which the numerical simulation is 
carried out whether discretization applies to space, time, energy or any other field. 
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Figure 4. The “leakage” of information from the macroscopic scale to the sub-scale, illustrated in the 
case of numerical simulations of material behavior. 
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We have established so far that sub-scale models are necessary to provide “closure” of the numerical 
simulation because information always cascades down from the coarsest-resolution scales to the 
lower (time, space, energy) scales. But introducing sub-scale models also implies that arbitrary 
choices and assumptions are made. An illustration of assumption-making is given in Figure 5, where 
simulations of vorticity in fluid dynamics are compared [4]. These predictions are for the exact same 
problem. They are, however, obtained using different levels of resolution (125-μm versus 31-μm 
zoning) and different sub-grid models (piece-wise linear Godunov versus 3rd-order Runge-Kutta 
interpolation). For these fluid dynamics simulations, the sub-grid models assume the behavior of 
small elements of fluid located within the computational zone. Hence, they describe a behavior at a 
scale that the discretization cannot possibly resolve. 
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(a) 125-μm zoning and 
linear Godunov model. 

(b) 125-μm zoning and 3rd-
order Runge-Kutta model. 

(c) 31-μm zoning and 
linear Godunov model. 

Figure 5. Simulations of fluid vortex illustrating three different combinations of resolution and sub-
scale models that result in noticeably different predictions. (From Reference [4].) 

 
The activity of modeling is an exercise in trading-off knowledge for assumptions. In other words, 
assumptions enable model-building: it is precisely the mechanism by which our ignorance can be 
masked. Assumptions and arbitrary choices are not just encountered when postulating sub-scale 
models, as discussed previously. Assumptions are also formulated to simplify a reality of interest and 
isolate a phenomenon that one wishes to observe through physical measurements or numerical 
simulations. An illustration is given in Figure 5 that depicts the simplifications and assumptions that 
the authors made in this 1974 study of the vibration characteristics of the Saturn launcher [5]. The 
structure is simplified as a one-dimensional beam model with varying cross-sectional areas and 
moments of inertia depicted, on the figure, with different colors. 
 
It is important to realize that, while unavoidable, modeling assumptions provide us with a false sense 
of confidence because they tend to “hide” our lack-of-knowledge and the true effect that this 
ignorance may have on predictions of the numerical simulation. The important question then 
becomes: “Are our predictions vulnerable to this ignorance?” This is the reason why it is argued that 
“predictability” should not just be about accuracy, or the ability of predictions to reproduce the 
available physical observations. It is equally important that predictions be robust to the lack-of-
knowledge embodied in our assumptions. Lacking robustness would imply that the predictions vary 
significantly as one assumption is replaced by another one. Making decisions based on predictions 
that are potentially sensitive to unwarranted assumptions, in turn, does not inspire great confidence. 
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Figure 5. Illustration of assumptions made to develop a computational model and study the 
vibration characteristics of a launch vehicle. (From Reference [5].) 
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It is important to realize that, while unavoidable, modeling assumptions provide us with a false sense 
of confidence because they tend to “hide” our lack-of-knowledge and the true effect that this 
ignorance may have on predictions of the numerical simulation. The important question then 
becomes: “Are our predictions vulnerable to this ignorance?” This is the reason why it is argued that 
“predictability” should not just be about accuracy, or the ability of predictions to reproduce the 
available physical observations. It is equally important that predictions be robust to the lack-of-
knowledge embodied in our assumptions. Lacking robustness would imply that the predictions vary 
significantly as one assumption is replaced by another one. Making decisions based on predictions 
that are potentially sensitive to unwarranted assumptions, in turn, does not inspire great confidence. 
 
4. A Brief Discussion of Uncertainty in Modeling and Simulation 
 
In “hard” computational sciences, uncertainty is usually synonymous with randomness. The 
mathematical theory best accepted, and most commonly encountered, to model, propagate, and 
quantify uncertainty is probability theory. There are, indeed, good reasons for this. Probability is the 
most mature of all uncertainty theories, it is supported by the Central Limit theorem [6], and it is 
backed-up by a formidable amount of experimental evidence. Even though the meaning of a 
probability may be subject to interpretation, most notably between frequentists and subjectivists 
(e.g., Bayesian), all interpretations obey the basic same axioms and computational formalism. 
 
Section 4 makes two main points related to Uncertainty Quantification (UQ) and its application to 
numerical simulations. The first point is to emphasize that, in a context where increasingly more 
importance is placed on simulating to support decision-making, it is essential to recognize the 
diversity of uncertainty in our problems. Not everything can be characterized as randomness 
anymore. Figure 5 illustrates the diversity of uncertainty applied to computational fluid dynamics. 
Clearly, the three solutions shown are different, even though the exact same equations are solved; 
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and, surely, this uncertainty is not random in nature because repeating each calculation yields the 
exact same solution. This uncertainty may be chaotic but it is, for sure, deterministic. 
 
How uncertainty should be modeled mathematically, and dealt with to support decision-making, 
must account for the origin and nature of information involved. This is because the process of 
making decisions based on M&S involves combining opinions and expert knowledge; evidence that 
originates from historical databases, physical observations, and numerical predictions; and, 
ultimately, consensus-building. Each piece of evidence comes with its own uncertainty, whose nature 
may differ depending on the type of information involved. Examples include: 

 Variability and randomness (naturally occurring, environmental, etc.); 

 Multiple possible solutions or observations (also known as non-specificity); 

 Ambiguous, vague, or imprecise observations; 

 Inconsistencies in knowledge, lack of definitive information; 

 “What is available” vs. “what is needed;” 

 Interpolation and extrapolation of models and datasets; 

 Inference uncertainty;50 

 Assumptions made to mitigate the lack-of-knowledge or ignorance; and 

 Poorly-known theory and/or first-principle physics. 

To support decision-making using numerical simulations, we contend that uncertainty should be 
defined in a broad sense as “everything that is not known absolutely.” A corollary to the 
recognition of this diversity is that the theory of probability may not be the only “tool” available to 
model mathematically, propagate, and quantify the uncertainty in our problems. Even though the 
issue is not debated here, the larger class of mathematical theories of uncertainty known as General 
Information Theory (GIT) may offer more appropriate representations. The GIT includes such 
theories such as probability theory, possibility theory, interval arithmetic, fuzzy sets, fuzzy logic, 
Dempster-Shafer theory of plausibility and belief (or “evidence” theory), convex models of 
uncertainty, and imprecise probability. More thorough descriptions of the GIT are available from 
References [7-9], to list only a few, and illustrations of this topic can be found in Reference [10]. 
 
The second point emphasized in this section is that, to support decision-making, it is essential to 
treat the uncertainty due to lack-of-knowledge differently from uncertainty that originates from 
other sources of variability or randomness. We have seen in section 3 that assumptions must be 
made in numerical simulations to mitigate the lack-of-knowledge or ignorance of some aspects of 
the problem. Confidently reaching a decision, therefore, necessitates that the predictions be as 
insensitive as possible, or robust, to these assumptions, as demonstrated in Reference [11]. 
Otherwise, decision-makers run the risk of basing their decision on information over which they 
have no control because predictions would change depending on which assumption is used. 
 
We contend that it is a grave mistake to simply ignore the uncertainty introduced in simulations by 
the modeling assumptions. Unfortunately, it is most often ignored in computational sciences, which 

                                                 
50 Inference uncertainty means, here, the uncertainty introduced by the entire process implemented to propagate 
information from what can be observed (such as a measurement) to the targeted (or inferred) quantity. Inference UQ 
means the propagation of uncertainty from “inputs” of the process to its “outputs.” 
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leads to a tendency of practitioners to become over-confident in the forecasting power of their 
simulations. The influence of assumptions on predictions should, instead, be propagated and 
quantified, as discussed in section 5. One should also be warned against the temptation to treat 
assumption-making like one would propagate random variability through a problem. Doing so is 
simply wrong because assumptions are not random variables. The sometimes-suggested approach of 
“sampling” assumptions with probabilities makes no sense. Attempting, likewise, to aggregate the 
uncertainty due to assumptions with other sources of uncertainty is meaningless. 
 
The proposal to handle the uncertainty caused by lack-of-knowledge by studying the robustness (or 
lack thereof) of predictions to modeling assumptions is dealt with in section 5. An example is 
presented next to illustrate these concepts and setup the discussion. This illustration follows the 
discussion, in section 3, of resolving versus modeling. 
 
The level of resolution at which a numerical simulation is analyzed defines a solution uncertainty 
caused by truncation error. To understand its nature and justify why assessing the robustness of 
predictions is appropriate, the principle of discretization is briefly explained. The essential point is 
that, when a system of partial (or ordinary) differential equations is solved numerically with a 
computer code, the solution obtained is different from the solution of the original equations. In fact 
the solution obtained does not even solve the same equations! 
 
Assume, for example, that a system of one-dimensional conservation laws is solved such as: 

, 
(1) 

where yExact(x;t) is the exact solution, F(•) denotes the flux term, and S(x;t) is a source or forcing 
function that drives the dynamics of the system. These generic functions depend on space and time, 
labeled “x” and “t,” respectively. When solving equation (1) with a numerical method, one seeks the 
best-possible approximation of the exact solution yExact.  This equation applies to a variety of 
phenomena that include, for example, the Navier-Stokes equations of fluid dynamics, Euler 
equations of gas dynamics, equations-of-motion of solid mechanics, or the evolution of species in 
chemical reactions. 
 
The numerical method discretizes the continuous equation (1) on a computational mesh to yield a 
discrete solution yk

n = y(kΔx; nΔt) where Δx and Δt are the spatial and temporal resolutions, 
respectively. The approximation yk

n is obtained by solving a discretized equation that looks, for 
example, something like: 
 

. 

 

(2) 

The approximation shown in equation (2) would be obtained by estimating the operator of time 
differentiation (/t) with an Euler method, while the differentiation in space (/x) is estimated 
with a trapezoidal scheme. Many other choices are available in the disciplines of finite volumes, 
finite differences or finite elements. One may observe that the discretized equation (2) “appears” 
similar to the original, continuous equation (1). The similarity is, however, misleading. 
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Contrary to common belief, the discrete solutions yk
n are not approximations of the continuous 

solution of yExact equation (1). Using an analysis technique known as Modified Equation Analysis 
(MEA), see Reference [12], it can be shown that approximations yk

n converge to the solution of a 
modified equation that takes a form such as: 

.. (3)

Note that this example is conceptual and the correct form of the modified equation depends on 
properties of the original equation (1) and numerical method (2) implemented for its resolution. 
What is important to the discussion is that the solution y of the modified equation (3) is different 
from yExact, at least, as long as the spatial and temporal resolutions remain finite (Δx  0, Δt  0). The 
Lax equivalence theorem of Reference [13] details the conditions under which the discrete 
approximations yk

n are consistent with, and converge to, the continuous solution yExact. 

 

2U(Δx) yExact 

Figure 6. Convergence of discrete solutions ykn and bounds of solution uncertainty U(Δx) for the 
resolution of the one-dimensional, non-linear Burgers equation (4). 

The terms shown between parentheses in the modified equation (3) represent an infinite series 
expansion that characterizes the truncation error of the numerical simulation. It can be seen that 
truncation is what explains the difference between solutions y and yExact. The effect of truncation is 
illustrated graphically in Figure 6 that compares four discrete solutions yk

n, shown with green 
squares, obtained with different levels of mesh resolution Δx.51 Because the leading-order term of  

                                                 
51 For completeness, we note that Figure 6 corresponds to the analysis of a one-dimensional, non-linear Burgers 
equation where dissipation is added in the right-hand side: 
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.. (6)

In the case of the Burgers equation analyzed (see footnote 51), the exact solution yExact is known and 
shown in Figure 6 with a dashed, black line to verify that the bounds of solution uncertainty U(Δx) 
are accurate. 
 
The application presented briefly in Figure 6 illustrates that settling on a given discretization of the 
computational domain is an assumption needed to run the computer code, and to mitigate our 
ignorance of the exact solution. Selecting discretization parameters, such as Δx or Δt, is not an 
irreducible and aleatoric source of uncertainty. It means, therefore, that there is no such thing as 
distributions of Δx-values that could be characterized by probability functions, and from which one 
may draw samples for propagation through the numerical simulations. Likewise, there is no “truth” 
value of the Δx parameter that could be measured experimentally! To be confident that the 
numerical simulation provides useful information for decision-making, one should, therefore, 
establish that the predictions are not influenced by, or sensitive to, this choice of discretization. 
 
To conclude this discussion of uncertainty in M&S, we note that the effect of discretization is to 
modify the original partial differential equations studied, as can be seen by comparing equations (1) 
and (3). This is a remarkable observation because it mirrors what has long been known in 
experimental sciences. Attempting to physically measure a small-scale phenomenon actually changes 
the reality of interest. As a result, the measurements collected are approximations of what the 
experimentalists are attempting to observe. Likewise, the discretization of equations on a 
computational mesh changes the very equation that the numerical analysts are attempting to resolve. 
As a result, the predictions obtained are only approximations of the true-but-unknown solution of  
the continuous equations. 
 
5. Trading-off Accuracy, Robustness, and Consistency of Predictions 
 
Section 4 has discussed the diversity of sources of uncertainty in numerical simulations as well as a 
proposal to treat uncertainty introduced by assumption-making differently from sources of 
randomness and variability.52 The rationale is that, in order to be confident in a decision, one should 

                                                                                                                                                             

. 
(4)

The Lax-Wendroff finite volume method is implemented to solve the Burgers equation [14]. The modified equation 
gives a spatial truncation error equal to: 

, (5)

where the contribution to truncation error of time discretization terms is omitted for simplicity. Equation (5) indicates 
that the Lax-Wendroff numerical method implemented to solve the Burgers equation is second-order accurate because 
the leading-order term of truncation error is proportional to Δx2. 

 
52 Note that this robustness-based treatment of assumptions would be in addition to, not in lieu of, the quantification of 
sources of uncertainty grounded in randomness and variability. Aleatoric uncertainty can be propagated through 
numerical simulations using the combination of sensitivity analysis and statistical sampling that, while they may offer 
practical difficulties when exploring large-dimensional spaces, are very mature technologies in statistical sciences. 
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guarantee that predictions of the simulation are not influenced by, or sensitive to, specific 
assumptions. Decisions based on robust predictions are, by definition, more trustworthy than those 
that may be sensitive to modeling assumptions [11]. This is because robustness mitigates the risk of 
having selected incorrect assumptions. 
 
In this section, the concepts of accuracy, robustness to lack-of-knowledge, and consistency of 
predictions are further explored and “linked” together though functional relationships to arrive at a 
definition of “predictability.” The definition proposed is not just a statement; it is backed up by 
machinery inspired from Reference [11] and based on quantifiable metrics. It is shown how the 
metrics, that are referred to as the triplet (R; *; λ), are used to study the trade-offs between 
accuracy R, robustness to lack-of-knowledge *, and lack-of-consistency of predictions λ. 
 
To start the discussion, we go back to section 2 that evokes “predictability” in computational 
sciences. We ask what are the benefits expected of a predictive capability. What may be gained by 
developing a science-based predictive code, as opposed to empirical fits-to-data? A first answer that 
comes to mind is that science-based simulations lead to improved accuracy of the predictions. 
Considerable evidence has surely been collected over the past two decades in many disciplines of 
computational physics and engineering that support this statement. One should be careful, however, 
that focusing the benefits of M&S solely on accuracy, or the ability of predictions to match the 
available physical observations, does not open the door to an excessive practice of model calibration 
or “knob tuning.” In fact, it is well-known that too much reliance on matching physical 
measurements through model calibration is detrimental to generalization, that is, the ability of a 
numerical simulation to predict new datasets that it has never “seen” before. Even though it 
improves the goodness-of-fit, calibration is unwelcome if it becomes the means to compensate for 
unacknowledged modeling errors. 
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Figure 7. Illustration of modeling strategies, either empirical (left) or science-based (right), 
developed to calculate the shape of the coastline of Southern Wales. 
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What else, besides prediction accuracy, or fidelity-to-data, may be gained? We propose, even though 
this second aspect of “predictability” is somewhat less apparent, that what is also gained is improved 
robustness of the predictions to modeling assumptions formulated to “hide” the lack-of-knowledge. 
A science-based, predictive capability tends to produce predictions that are less vulnerable to 
assumptions made to develop and implement the models and algorithms. To make this point, 
consider the metaphor illustrated in Figure 7, where mathematical models are formulated to 
represent the shape of the coastline of Southern Wales. One approach develops an empirical model 
strongly grounded in physical observations. This is illustrated on the left of Figure 7 with a model 
that depends on a coarse description of the geometry, through a single radius-of-curvature R. The 
right side of Figure 7 suggests a science-based approach where the representation implements a finer 
description of the geometry with multiple radius-of-curvature parameters such as 1 and 2. 
 
Irrespective of whether the empirical model (left-side) is more accurate, at least locally, than the 
science-based model (right-side), the fact remains that its predictions depend on a single, global 
parameter R. A mistake in the knowledge of R could have devastating consequences on the 
accuracy of predicting the coastline’s shape. The science-based description, on the other hand, 
depends on several parameters. Comparable errors in the knowledge of 1 and 2 would have 
somewhat less detrimental consequences on the accuracy of predictions. It means that, at a similar 
level of accuracy, the predictions of the science-based simulation are more robust to any potential 
lack-of-information about how the coastline’s geometry should be parameterized. 
 
A third expected benefit of science-based “predictability” is to reach an improved consistency of 
predictions. Consistency refers, here, to the fact that the predictions obtained with different models, 
algorithms, or numerical options, do not change significantly. It matters greatly because a consistent 
body of evidence, including numerical predictions, ultimately leads to confidence in decision-
making. Note that, by “confidence,” we do not mean the notions defined in statistical sciences of 
confidence interval or statistical level of confidence. The Oxford dictionary defines confidence as a 
feeling or belief of certainty. Uncertainty or inconsistency, therefore, reduces confidence. A practice 
often encountered in sciences and engineering is to solve a problem with different analysis 
techniques. The argument in favor of such a practice is two-fold. Consistently reaching the same 
conclusion reduces uncertainty, which increases confidence. Another side of the argument is that, 
reaching the same conclusion with computer codes or analysis techniques that are based on different 
assumptions, implies that the final result is robust (or insensitive) to these choices. These 
relationships can be expressed with mathematical expressions such as: 
 

   and   ,    
(7) 

where the symbols λ and * denote the lack-of-consistency of predictions and robustness to lack-of-
knowledge, respectively. (Definitions for λ and * are given below.) Because the sign of the partial 
derivative is negative, the first of equations (7) expresses compactly that confidence tends to be 
reduced when λ increases. The second of equations (7) recognizes that confidence tends to increase 
with *. To take advantage of observations formalized in relationships (7), and define a quantifiable 
process for decision-making, the triplet (R; *; λ) is defined next. 
 
The definition of metrics (R; *; λ) of fidelity-to-data, robustness, and lack-of-consistency follows 
closely a discussion given in Reference [16]. It is inspired, to a great extent, by the information-gap 
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theory for decision-making formulated in Reference [11]. Practical applications of this theory to 
engineering-like simulations can be found in References [17, 18]. Because of this affiliation, the 
discussion that follows only summarizes the main points. 
 
Predictions of a numerical simulation are conceptually denoted as y(p;θ) where the simulation 
analyzed depends on control parameters “p” and ancillary variables “θ.” Variables θ represent the 
calibration variables, numerical settings, and assumptions that, as we have seen previously, introduce 
uncertainty in the numerical simulation. This is contrast to the control parameters that define the 
design space within which the simulation code is exercised. Physical experiments are performed at 
specified settings of control parameters to collect the observations yTest. With these simple 
definitions in hand, one can define the metric R of prediction accuracy as: 
 

, (8) 

where ||•|| denotes a norm, coefficient of correlation, or metric of test-analysis comparison that is 
deemed appropriate to define accuracy. 
 
The second metric to be defined is the robustness *, that is intimately linked to the definition of 
uncertainty in the problem. For generality, and because our focus is on promoting confidence in 
predictions as expressed by equations (7), we do not wish to postulate a specific (mathematical) 
representation of uncertainty such as probabilities, fuzzy sets, or intervals. Instead, families Uα of 
predictive models are defined in a generic sense as: 

  oU y ;  such that -p     
, 

(9) 

where the subscript (•)o represents the nominal, commonly-accepted, or “best-guess,” value of a 
quantity; and the symbol  is a positive scalar,  ≥ 0, that represents a horizon-of-uncertainty. The 
meaning of equation (9) is that the family of predictions Uα includes all models or numerical 
simulations for which the ancillary variables θ do not deviate from the nominal settings θo by more 
than the horizon-of-uncertainty α. Given additional conditions on the definition of ||θ–θo||, such 
as convexity, the definition (9) yields mathematical properties not discussed here but that are 
essential to the derivation of trade-offs for the triplet (R; *; ). (See References [11, 16].) 
 
The robustness α* of the numerical simulation, given the definition of uncertainty models Uα, is the 
largest horizon-of-uncertainty that can be tolerated while guaranteeing a prediction accuracy no 
worse than RMax. The significance of the family of models Uα*, at the level of robustness *, is that 
any prediction y(p;θ) chosen within this family is guaranteed to deliver the requirement of prediction 
accuracy RMax, irrespective of the settings defined for calibration variables, numerical options, and 
assumptions θ. Robustness α* is the solution of the nested optimization problem: 

   
  

o

Max
0 , -

* R R   such that  y p; Umax max 
    

 
 

 
  

 


, 

(10)

where the inner-most optimization searches for the worst-possible prediction accuracy that does 
not, however, exceed the requirement RMax, while the outer-most optimization optimizes the size of 
the horizon-of-uncertainty parameter α. Contrary to the paradigm of model calibration, the rationale 
of definition (10) is not to search for settings of the numerical simulation that yield the most 
accurate predictions. It is, instead, to robust-satisfice prediction accuracy, meaning that one searches 
for settings θ of the simulation that are as far away from the “best-guess” settings θo as long as 
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prediction accuracy meets the minimum requirement. One consequence of robust-satisficing is that 
settings may be found at which predictions of the simulation are more accurate than the prescribed 
level of error RMax which would be welcomed as a positive windfall. 
 
Once the robustness α* of the numerical simulation has been established, defining the lack-of-
consistency λ of predictions is easy. For simplicity, λ can be defined as the range of predictions 
obtained for all simulations that have the assessed level of robustness, that is: 

 
 

 
 

** y Uy U
max y min y






 
. 

(11)

 
A conceptual example is given in Figure 8 to illustrate the fidelity-to-data, robustness, and lack-of-
consistency of the triplet (R; *; λ). The figure assumes that there is a single ancillary variable or 
assumption θ represented by the horizontal axis. Each blue circle is a prediction made for a 
particular model, or value of θ. The vertical, dashed line (shown in red) represents the physical 
observation yTest, from which the maximum prediction error RMax is defined. The figure illustrates 
that solving for robustness * is a search for the models, or values of θ, that are located as far away 
from the nominal setting θo as possible, while yielding predictions that stay within the level of 
accuracy |yTest – y(p;θ)| ≤ RMax. For example, the model that gives to a prediction shown with a 
black square is outside of the domain of robustness because its accuracy does not meet the 
requirement The figure also illustrates that the lack-of-consistency λ is given by the range of 
predictions for all models included in the domain of robustness. 

Predictions, y 

yTest 

Robustness, α* 

RMax 

RMax 

Ancillary 
Variable, θ 

λ

θo 
(Nominal Setting) 

 
Figure 8. Conceptual illustration of the triplet (R; *; λ) of fidelity-to-data, robustness, and lack-
of-consistency for a one-dimensional source of lack-of-knowledge θ. 

 
Using these definitions for (R; *; λ), and the information-gap framework [11] to define families Uα 
of models in equation (9), Reference [16] derives mathematical proofs that explore the trade-offs 
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between fidelity-to-data R, robustness to lack-of-knowledge *, and lack-of-consistency of 
predictions λ. The main two trade-offs can be summarized compactly as: 

 

, (12)

and: 

, (13)

to which one may add, by virtue of the chain rule: 

. (14)

 

 

These mathematical inequalities lead to the following discussion: 

 Robustness decreases as fidelity improves. Numerical simulations made to better 
reproduce the available physical observations become more vulnerable to the sources of 
lack-of-knowledge in the problem that may include potential errors in the modeling 
assumptions, ignorance of the functional form of models, sub-optimal discretization and 
resolution settings, and incorrect definition of the numerical options. 

 Lack-of-consistency increases as robustness improves. Numerical simulations or 
models that are made more immune to the potential sources of lack-of-knowledge in the 
problem yield less consistent predictions. The inconsistency of predictions would, in turn, 
reduce confidence in the ability of the family of simulations or models to forecast 
configurations, settings, or environments that have not been tested experimentally. 

 Lack-of-consistency decreases as fidelity improves. Numerical simulations made to 
better reproduce the available physical observations lead to more consistent predictions 
when forecasting configurations that have not been tested experimentally. Although 
improving the consistency of predictions obtained from a family of equally-robust models 
is generally a good thing, it could also lead to over-confidence in the ability of the 
numerical simulation to forecast new scenarios. This trade-off expresses the false sense of 
confidence provided by an excessive reliance on model calibration. 

 
Equations (12-14) do not indicate that it would be impossible to obtain high fidelity-to-data, high 
robustness to lack-of-knowledge, and high consistency of predictions. Developing a predictive 
capability that, eventually, would feature these three desirable attributes of “predictability” may be 
possible. What these equations do demonstrate, is that simultaneously improving all three attributes 
is not possible. Our analysis indicates that past physical observations, accompanied by an incomplete 
understanding of the phenomena measured, cannot unequivocally establish true prediction of the 
behavior of the system. 
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We propose a definition of “predictability” grounded in the understanding, and exploration, of the 
trade-offs between the three attributes (R; *; λ). Exploring these trade-offs is essential because the 
fundamental process by which decisions are made is to balance the search for maximum “reward” 
with the aversion to “risk” [11]. It is precisely by understanding the trade-offs between reward and 
risk that humans make decisions. We argue that, similarly, it is by exploring the trade-offs between 
fidelity-to-data (this would be the “reward” piece) and robustness to lack-of-knowledge (this would 
be the “risk” piece) that models can be selected for optimal forecasting. The “predictability” of a 
family of numerical simulations of equal robustness would then be given by the consistency of their 
predictions (this would be related to metric λ), hence, the definition: 
 

“Predictability” is the ability to make as-consistent-as-possible predictions from a class of 
equivalent models, where the “class of equivalency” stems from the fact that all simulations 
or models included in the class share a minimum requirement of accuracy while being 
equally robust to the sources of lack-of-knowledge in the problem. 

 
We emphasize that this definition is not just a concept. Quantitative metrics for (R; *; λ) and a 
numerical procedure have been proposed to explore these trade-offs for decision-making. (See 
Reference [16] for discussion of the theory and References [17, 18] for “real” applications.) 
 
To conclude this section, the procedure outlined above for decision-making is illustrated in the case 
of a code verification exercise that assesses the numerical performance of, and quantifies the 
solution uncertainty for, a hydrodynamics code developed at Los Alamos. Figure 9 shows a mesh 
refinement study conducted for six test problems. These test problems are solved using different 
levels of mesh resolutions. The prediction errors are obtained by calculating the norms of 
differences between the (known) exact solutions yExact and numerical predictions y(Δx). The 
numerical settings varied in these runs include the spatial resolution Δx, temporal resolution Δt, a 
stability condition, and five other options of the numerical solver. The study performed 12,256 runs 
over a period of several weeks using up to four processors of a 30-TeraOPS platform. The solid 
lines of Figure 9 show the evolution of the mean error as the level of spatial resolution is increased 
(or Δx  0). The dashed lines represent the 1-σ uncertainty bounds that result from varying the 
time step, stability condition, and other numerical settings of the algorithm. Different colors refer to 
the analysis of different test problems. 
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Figure 9. Statistics (µ  σ) of solution errors versus resolution size Δx. 

One immediate observation is that the 1-σ bounds of variability of solution accuracy seem to be 
sensitive to the selection of resolution with which the test problems are analyzed. Running with 
increased resolution reduces the mean solution error; it also increases the 1-σ bounds of 
uncertainty. Greater accuracy, as Δx  0, comes at the cost of increased sensitivity to how the 
simulation is performed. These results are a manifestation of equation (12) that expresses the trade-
off between accuracy and robustness to lack-of-knowledge, where the ignorance applies, here, to the 
selection of settings of the numerical method. 

Data for one of the test problems analyzed, that simulates the propagation of a shock in a perfect 
gas (labeled “sod1D” in Figure 9), are studied next. For this code verification exercise, the solution 
accuracy can be defined as R = ||yExact – y(Δx)||, where the code predictions are compared to exact 
solutions of the equations solved, as opposed to physical observations. The most prominent lack-of-
knowledge is the level of resolution at which calculations are performed. As argued previously, the 
discretization size Δx is not a random variable whose uncertainty can be characterized by a 
probability distribution, nor can it be measured experimentally. The level of resolution that may be 
most appropriate to perform the numerical simulation is simply unknown. The same observations 
apply to the other numerical settings varied in this study. To assess the numerical performance of 
the code, one should therefore understand the extent to which solution accuracy is sensitive, or 
robust, to these settings. 

Figure 10 explores the robustness of solution accuracy to the assumption represented by the choice 
of resolution size Δx. The solution accuracy on the horizontal axis is plotted as a function of the 
inverse of resolution, or Δx–1, shown on the vertical axis. Moving up on the vertical axis means 
performing the calculation with more resolution. On average, increasing resolution tends to reduce 
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the prediction error, as indicated by the solid, blue line. The green, dashed line and dotted, red line 
represent, respectively, the best and worst solution errors. 

 

Δx* = 10–1.8 

Figure 10. Trade-off between accuracy ||yExact – y(Δx)|| and robustness to mesh size Δx. 

Figure 10 illustrates the protocol proposed for decision-making. A hypothetical requirement of 
accuracy RMax is shown as a vertical, black line. Given the locus of solution accuracy versus 
resolution, the analyst can select the robust-optimal size log10(Δx*–1) = 1.8, or Δx* = 0.016 cm, that 
satisfices the requirement of accuracy. The robust-optimal resolution is, by definition, the largest 
possible value Δx that guarantees the required level of solution accuracy. This point is identified on 
Figure 10 where the worst-accuracy curve intersects the requirement RMax. It is emphasized that, 
because this solution is robust-satisficing, it is possible to find other numerical solutions that provide 
more accurate predictions. These solutions would be located in the range that extends from the 
worst-case accuracy (shown as a red, dotted curve) to the best-case accuracy (shown as a green, 
dashed curve), at Δx = constant. This range of predictions from the worst accuracy to the best 
accuracy is, according to definition (11), equal to the lack-of-consistency λ. 

Another advantage of the protocol proposed for decision-making is that it does not give a unique 
answer. Because it explores the trade-offs of attributes (R; *; λ), Figure 10 presents the information 
necessary to study the effect of selecting an accuracy requirement that differs from the one shown at 
RMax = 10–1.3 gm.cm–3. A decision-maker must understand this information to select a solution 
based on his/her desire of “reward” and aversion to “risk.” It is by trading-off “reward,” or, here, 
the requirement of minimum accuracy, for “risk,” or, here, the combination of robustness and lack-
of consistency, that decisions are made. 
 
Answers to the Questions of Section 3 
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The questions asked in section 3 to illustrate the computing power available in the era of TeraOPS 
or PentaOPS computing are briefly answered. Beyond this anecdotal evidence, the point made to 
conclude our discussion is that this formidable power does not suffice to reach “predictability” in 
computational science. In fact, it may not even be necessary, as the trade-offs between accuracy, 
robustness to lack-of-knowledge, and consistency of predictions indicate. 
 
The first anecdote asks how long it would take to the World population to compute the same 
number of floating-point operations that a one-PentaOPS machine can sustain every second. Given 
an estimate of the World population at 6,697,254,000 (as of September 2010), it would take about 2 
full days, or 48 hours, to perform 10+15 operations, assuming that every human can type one 
operation per second. 
 
To answer the second anecdote (how long would a one-PentaOPS machine take to read the entire 
U.S. Library of Congress?), one needs to make a few assumptions about the size of this archive. We 
can reasonably assume 142 Million books with averages of 200 pages-per-book, 450 words-per-page, 
and 10 letters-per-word. These assumptions are conservative and lead to an upper bound of 1.28  
10+14 letters to read, approximately. Further assume that one floating-point operation is equivalent 
to reading one letter or character which, again, seems a conservative estimate. A one-PentaOPS 
machine would then be able to read this entire collection about 8 times per second! 
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Introduction 

 McNamara and Trucano’s54 discussion of the challenges of incorporating computational 

social science methods into national security decision-making identifies many crucial issues and 

suggests potential approaches to resolving them.  There is very little in their paper with which I 

categorically disagree.  In this paper, rather, I offer my perspectives on many of the issues that 

they raise, and offer alternative interpretations of their character and potential solutions.  I whole-

heartedly agree with their stance of “productive skepticism” and fully believe that more effective 

decision-making will result from robust debate on the best applications of social science methods 

(computational and others) to the significant security challenges of today. 

 In particular I will argue below that in the national security decision-making domain, the 

differences between social science and physical system modeling and between academic and 

national security applications of computational modeling have significant implications for best 

leveraging these approaches.  I will make suggestions for 1) how academia could adapt to 

smooth the transition of concepts and approaches into government decision-making process; 2) 

how government-funded R&D projects should be structured; 3) how analytic organizations 

should recruit, train, and deploy its workforce; and 4) how verification and validation should be 

conducted. 

                                                 
53 The positions and opinions stated in this paper are solely those of the author and do not represent the positions of the 
United States Government or the U.S. Department of Defense. 
54 References to McNamara and Trucano are to DTRA Challenges Report 8/4/10 Draft. 
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 Before developing my arguments, several disclaimers are in order.  My experience is 

rather limited, and primarily with smaller Department of Defense (DoD) organizations that 

provide analytic support to primarily operationally-focused components.  My principal focus has 

been on effective policy implementation, not policy-making.  Those from organizations with 

other missions and analytic demands, larger budgets and/or larger, more highly educated staffs 

may well have different perspectives.  Thus, the opinions stated below are intended primarily to 

apply to analysis in support of military operations and not specifically to other applications of 

computational social science such as strategy and policy-making, mission rehearsal and training. 

In my opinion, however, the issues raised may be relevant in other contexts as well.  In addition, 

while McNamara and Trucano (6) differentiate computational social science from quantitative 

social science, here I don’t make that distinction.  I will suggest below that expertise in 

techniques from formal modeling, statistical analysis, system dynamics, agent-based modeling 

and other approaches are necessary for an analysis team to tackle the national security questions 

it will be called upon to address.  Finally, while I will speak in terms of broad generalizations, I 

recognize that many individuals and groups long ago moved past my recommendations and are 

conducting excellent work.  My purpose here is to generate discussion about the best path 

forward, not to criticize nor denigrate anyone’s work. 

 

Computational Social Science and National Security 

 As McNamara and Trucano (20) point out, “computational modeling is part of defense 

culture” and most decision-makers are comfortable incorporating insights from mathematical 

models into their decision calculus.  On the other hand, there are a considerable number of 

national security officials (including both civilians and military officers) who have little trust in, 
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or use for, mathematical models of human behavior. Indeed, it often seems that officials fall into 

two factions: those who are not skeptical enough, and those who dismiss all quantitative social 

science as either invalid or unnecessary.  The challenge of this paper, and of this workshop, is to 

find the balance between the two camps that takes maximum benefit from the methods of social 

science. 

 Military organizations have been employing mathematical models for diverse purposes 

since long before computers were invented, but my impression is that it wasn’t until the 1960s 

that quantitative techniques were applied by the U.S. military to analysis of social phenomena.  It 

is also my impression that the benefits of quantitative social science were exaggerated and they 

under-delivered during the Vietnam era, creating a backlash against this approach in the post-war 

period, although some social scientific approaches continued in areas like analysis of U.S. forces 

and nuclear deterrence.  

 It is clear that quantitative social science is again gaining favor among the defense 

establishment, for a number of reasons.  First, as McNamara and Trucano point out, decision-

makers are looking for more scientific (i.e. unbiased and objective) sources of information on 

which to base their decisions (20).  As long as social scientists don’t exaggerate their ability to 

discern objective truth, social science can indeed contribute to a better foundation for decision-

making.  Second, enormous gains in computing power have made more complex (and more 

realistic) models of social phenomena possible, although this has the perverse effect of making 

the understanding of insights derived from the models more difficult.  Third, advances in 

information exploitation and information management technologies allows researchers and 

analysts easy access to types of data that were formerly much more difficult to obtain.  
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 While this is a propitious time for quantitative social science, proponents should be 

careful not to repeat the mistakes of the post-Vietnam era.  Workshops like this that seek to 

develop high standards and hold computational social science accountable to meeting them are 

very important for establishing the proper place of these approaches in the array of tools 

available to support national security decision-making. 

 There is potentially great value to be gained from deeper incorporation of computational 

social science, and quantitative social science more generally into analysis in support of 

decision-making processes.  First, quantitative methods have a long history of uncovering 

patterns in the data derived from observations of complex phenomena, and these techniques can 

be quite useful for gaining insight about new or poorly understood systems. It is the use of social 

science’s hypothesis testing methods, however, that I believe is the most powerful use of 

computational methods. It is true, as McNamara and Trucano state (29) that “models and 

simulations…are not arbiters of truth in any absolute sense,” but perhaps they can be leveraged 

to uncover the falsehoods inherent in faulty qualitative system characterizations offered in 

support of decision-making. 

 In general, the purposes behind the application of computational social science 

approaches in academic settings are different than the needs of national security decision-

makers. The academic social sciences tend to favor individual research in narrow domains over 

collaborative, multi-discipline research during promotion and tenure evaluations while national 

security decision-makers require holistic analysis of their problem domains.  It seems to me that 

cross-department collaboration tends to involve the computer science department with a single 

social scientist. Secondly, most social science sub-disciplines, especially those that favor 

computational and quantitative approaches, tend to favor research agenda that focus on 

 160 



 

developing grand theory and finding broadly-based empirical support over deep understanding of 

a single case while analysis supporting national security focuses on the single cases almost 

exclusively.  

Thirdly, as McNamara and Trucano point out, the fields like geophysics, seismology, and 

physics that have most rigorously addressed issues of modeling and simulation have strong 

applied subfields (25).  In the social sciences however, the applied sub-fields tend to be more 

focused on qualitative approaches, and to use quantitative and computational methods mostly for 

policy evaluation. In addition, social science has not paid sufficient attention to problems of 

missing or suspect information.  Quantitative and computational social scientists tend to choose 

research domains where the data is already collected, or fairly easily collected while national 

security analysts are often dealing with situations with great uncertainty derived from both 

missing and unreliable information.  

Finally, and perhaps most importantly, academic social science is primarily concerned 

with understanding “what is” not with projecting “what if.”  While accepting that the act of 

observing an event may affect the outcome, social scientists are generally focused primarily on 

understanding a situation or phenomenon as it exists and perhaps how it will evolve into the 

future but expend very little effort on understanding how various interventions might change the 

outcome.  This however is precisely the task of the national security analyst: to understand how 

interventions (including by allies, neutral, or competitors) might change a situation into one more 

or less favorable to the analyst’s country.  This of course raises issues concerning the proper role 

of academic institutions, and for the professional codes of ethics of various disciplines that I will 

not address here.  Nonetheless, there are implications for graduate student training and research 
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agenda that could be considered without causing harm to academic integrity or field researcher 

safety.    

 While McNamara and Trucano point out many of the parallels between modeling 

physical systems—both natural and human-made (e.g. weather, earthquakes, nuclear weapons)—

and social systems, the differences are significant for understanding how best to incorporate the 

insights gained from years of experience with modeling those physical systems.  The most 

significant difference is the absence of immutable laws in the social domain.  Put simply, people 

make choices and they learn, in ways that don’t apply to physical systems.55  Two groups of 

people don’t necessarily behave in the same manner even though the situations may appear 

identical.  Of course I won’t deny that there are patterns in human behavior but, and this is 

especially significant for analysis of national security issues, people learn from experiences and 

change their behavior to gain an advantage in future interactions.  

 I believe that these differences between modeling physical systems (which national 

security officials are comfortable with) and social systems imply needed modifications of the 

way we approach application of computational social science.  While I’ll discuss in more detail 

in a later section, here I’ll offer my opinion that the principal implication is that (expensive) 

large-scale, complex, multi-system models may not be useful beyond a narrow scope.  As Robert 

Axtell et al noted (quoted in McNamara and Trucano 36) social science models are usually 

created de novo for each research project.  While they suggest this derives from the creative 

impulse in the modeler, I would argue that the primary driver is that each situation is unique in 

significant ways.  Social science helps identify the factors that should be considered in the model 

building activity, but the driving factors and their arrangement will likely vary significantly, even 

when the situation looks quite similar to that encompassed in an extant model.  
                                                 
55 I’ll leave out discussions of animal- and machine-learning as irrelevant distractions from the main points here. 
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Suggestions for Improving Applications of Computational Social Science  

 In this section I will suggest modifications to the manner that academic departments, U.S. 

Government R&D agencies, and analytic organizations conduct business in order to better take 

advantage of the potential of computational social science.  As I stated above, I clearly recognize 

that many organizations have already taken steps in the right direction, and many have conceived 

and implemented ideas superior to those offered here.  I see much reason to be optimistic that the 

trends indicate that the potential benefits of computational modeling will be more effectively 

realized in the near future. 

 Based on shifts in the types of candidates interested in positions in national security 

organizations my sense is that graduate students and (more slowly) their academic departments 

are moving toward greater acceptance of national security careers, perhaps because of declining 

opportunities for new PhDs in academia but also because of an increased enthusiasm for public 

service.  As noted above, universities could better prepare their students for analytic careers in 

national security by developing and exercising their abilities to model and evaluate multiple 

potential futures.  Furthermore, by rewarding multi-discipline, multi-contributor research agenda 

with promotions and tenure departments could incentivize their faculty to produce research much 

needed by the national security establishment.  I believe that we have an immense body of theory 

to explain individual social phenomena, but insufficient development of methods that integrate 

the insights of multiple disciplines into a coherent, actionable whole.  

 It is my impression that considerably more multi-discipline research occurs in 

universities today than in previous periods, in part due perhaps to the lure of government 

research funding that increasingly demands such approaches.  While this has been quite 

 163 



 

beneficial to the advancement of computational social science, I believe that modifications to 

their approaches, some of which are being applied at some agencies, would have significant 

payoffs. 

 First: Methods before software tools.  Some large projects funded by the US government 

have included multiple social science disciplines and approaches (a good thing) and have 

attempted to develop tools to integrate the insights from the various methods.  While the 

resulting systems have been impressive (from a computer science perspective) at handling data 

and supplying the outputs of some models as inputs of others, it is not clear that the systems are 

all that useful for supporting national security decision-making.  As McNamara and Trucano 

assert multiple times, model outputs have to be interpreted to be useful for decision support. 

Using model outputs as inputs to other models concerns me for two reasons: because uncertainty 

and error is compounded mathematically in unknown ways and because the difficulty of 

interpreting the final model result is raised considerably. It has been my experience that the most 

useful social science software was often developed by the social scientist himself/herself to solve 

a particular problem.56  My suggestion is that funding agencies push for development of analytic 

processes that integrate insights from multiple disciplines to support decision-making in specific 

domains, first conceptually, followed by development of mathematical (or other computational) 

representations, before moving to development of robust, user-friendly tools.  Rigorous peer 

review and validation should occur at each step. 

 Second: Flexibility is important.  As noted above, while there are important similarities 

among cases it’s likely that each case is different in significant ways, and those differences 

should be represented in models used to analyze the case.  Analysts shouldn’t have to write new 

                                                 
56 Even though the code was likely very ugly and didn’t conform to any standards.  This describes some of my early 
work pretty well. 
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code from the bottom up to represent their current problem, but nor should the government spend 

hundreds of thousands of dollars (or more) to develop a system that is only valid for a narrow 

domain.  I suggest government support for the development of systems that facilitate model 

development, analysis, and visualization in a large number of contexts and that support 

development of libraries of models and components that can be shared and understood easily 

among analysts.  

 Third: The “over the fence model” doesn’t work.  McNamara and Trucano (42) note the 

difficulties of transitioning technologies developed in isolation from the end-user.  Everyone in 

the community knows this approach doesn’t work, yet the vast majority of analytic capability 

projects are executed this way, and most are unlikely to transition in any way that makes use of 

their apparent potential.  The U.S. Defense Department has recognized this problem however and 

DoD agencies are being pressured to increase attention to transition. There are three ways to 

overcome the over the fence problem (but two are unlikely to be fully successful).  

Government organizations with analytic missions could opt to develop new capabilities 

internally, involving their production analysts in the R&D processes.  This is unlikely to be 

successful, however.  The demand for analysis always exceeds an organization’s capacity, so the 

temptation is always to delay R&D activities to complete production tasks.  Furthermore, the 

motivation and skills necessary to conceive of and implement innovate new analytic techniques 

are more likely to be found in universities and commercial businesses than within government 

agencies.   

A second solution to this problem is to contract with the organization that develops a 

capability to supply the workforce needed to conduct analysis.  This approach has worked in the 

past, with private companies and semi-governmental organizations providing much needed 
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analytic expertise and tools to support national security decision-making.  Given current trends 

toward less out-sourcing and more limited defense budgets, this solution is probably not optimal 

in the long term. 

A final approach to transition is to continue to centralize capability development around 

the government R&D organizations, but to involve end-user organizations earlier and more 

deeply in the development and evaluation process.  This requires sustained effort on both 

government organizations as well as the contractors but pays off in that end-users get their 

requirements met earlier in the process, allowing earlier, smoother, and more effective transition.  

Training time is shortened because the target organization’s initial adopters are learning tools 

and techniques during system evaluation and validation activities.  This is crucial for acceptance 

by the end user analysts.  I have seen many sophisticated capabilities rejected by analysts 

because they had no basis to trust the tool or method’s validity and usefulness for their analytic 

tasks.  Analysts who work with a capability throughout its development cycle gain an 

understanding of its strengths and weaknesses and thus develop confidence in using it for tasks 

on which significant decisions (and their professional reputations) will be based. 

Government organizations could also adapt to better utilize computational social science 

in their analytic processes, and indeed many have begun.  Much has been made of the Defense 

Department and U.S. Intelligence Community’s attempts to recruit and develop analysts with 

deep cultural knowledge.  It seems to me, however, that the demand for social scientists with 

computational and quantitative skills is increasing as well.  The problems and decisions with 

which organizations are required to grapple are increasing complex and multi-faceted.  I would 

suggest that the analytic teams assigned to support these decisions be multi-faceted as well, 

including members with a variety of analytic skills, social science disciplines, and relevant 
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cultural knowledge.  People tend to be most comfortable working with people with similar 

educational backgrounds but just as I suggested that academics be incentivized to develop 

methods of integrating multi-discipline research, analytic organizations would do well to develop 

multi-faceted approaches to analysis as well. 

The increased use of computational and quantitative social science methods would have 

implications for the recruitment and professional development of the government workforce as 

well.  Some analysis processes will simply require highly educated, experienced analysts to 

execute properly; others will not.  I would argue that we should not build tools and methods 

aimed at the workforce we have; we should strive to develop the most powerful analytic 

techniques possible, demonstrate their value, and then decide whether the increased costs are 

acceptable. 

Finally I will turn to the subject of Verification and Validation with which McNamara 

and Trucano are much concerned.  I agree with them that verification is quite important.  One 

should be diligent in ensuring that a tool is operating as one expects (although I have had a few 

experiences in which significant errors in software code had only minor effects on analytic 

results).   And I agree that validation is also important, though I don’t think it should get quite 

the attention that they do. 

Building on a central theme of McNamara and Trucano’s paper, the contribution of 

analysis to decision-making is a social process.  Within that process are several validity checks.  

Decision-makers are seldom concerned with the sophistication of the analytic methods behind a 

recommendation; they are more concerned with the persuasiveness of the logic of the 

recommendation in natural language.  Secondly, analytic organizations and the analysts within 

them live on their reputations; one shoddy analysis can wound an organization or a career.  
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Analysts, and their supervisors, have strong incentives to produce quality analysis.  In my 

opinion validity would be better supported through better educated and experienced analysts than 

through formal external validation.  

As I suggested above, each case is likely to require substantively different models than 

similar cases; the interpretations that can validly be drawn from a model will vary according to 

the specifics of the case.  I am skeptical that many computational models will be developed and 

used in multiple analysis tasks.  I am not saying that validity should not be a driving concern for 

developers and analysts.  Rather I am suggesting that the payoffs from formal external validation 

be carefully considered against the costs. 

 

Concluding Remarks 

 As discussed above, computational social science has the potential to significantly 

improve the analysis supporting national security decision-making.  Properly implemented, and 

accompanied by the appropriate caveats and disclaimers, these approaches begin to fill many of 

the gaps in our analytic capabilities.  While we should always strive for and demand excellence, 

we should also remember that the threats facing us are enormous, and coming at us quickly.  We 

can’t afford to wait for nearly perfect solutions many years from now but should be prepared to 

field partial solutions now as long as we are confident we understand their limitations and can 

assess those effects on the certainty of our recommendations.  
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In most of basic scientific research errors in modeling are problematic, but not life threatening.  In 

fact, the risks associated with pushing forth the envelope of scientific knowledge are rife with risk, 

uncertainty and errors of various kinds.  But this tolerance of error declines precipitously as we 

move from basic science to applied science. Although based on earlier more theoretical work, 

applications of science should ensure that bridges won’t fail, aircraft not drop out of the sky, and 

electronic consumer items won’t cause cancer.  Thus, as we move into the world of modeling of 

humans we need to be sure that the scientific theory surrounding the phenomena of interest is well 

enough developed to give confidence that outcomes can be determined with some degree of 

certainty and reflect some reasonable reality.  Furthermore, errors of various kinds are inevitable, but 

the science of errors should be well understood so that more reasonable estimates can be made.  In 

statistics, for example, the behavior of error under random sampling is well understood and can be 

used to make estimates about population parameters from a sample taken from the population, as 

long as the sample is truly random.  

In the national security context errors can be costly.  Innocent lives lost, unjust 

incarcerations, wasted resources, and alienation of various populations are among the potential 

costs.  Thus, if we use models of human behavior we should have a through understanding of their 

reliability and validity and the reliability and validity of the data that feeds them so as to not have a 

“structural” failure as in the bridge reference above.  These models should transition from the more 

theoretical world of risk and uncertainty to an applied world of known model performance and a 

fundamental understanding of errors that can undermine the validity of such models.  This is 
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particularly the case for social network models that are often used for targeting individuals and 

shaping social terrain in the course of fighting terrorism, insurgencies, etc.  What this paper 

addresses is a call for the science of errors in social network models in the national security context 

where errors can have grave implications.  Just as an understanding of error is essential in proper 

conduct of classical probability and statistics, error in all of its aspects should be understood in the 

onduct of social network modeling and analysis.          c

 
Social Network Modeling as Computational Modeling 
 

Given this collection of papers is concerned with computational models in the social sciences the 

question arises is social network analysis and modeling a kind of computational approach?  The 

National Academy of Science committee on “Modeling from Individuals to Societies” was tasked 

with reviewing the state of the art in modeling of humans at the macro, meso, and micro levels.  In 

the course of discussing social and behavioral models it was clear that committee members used 

different terms and focused on different elements of modeling leading to some confusion. To focus 

the discussion and organize future discussions (and the eventual book), data was elicited from 

committee members to understand the behavioral modeling domain. Members were asked to name 

all the types of models they could think of.  The top 36 most frequently mentioned models were 

then used for a pile sort task.  Each member was asked to sort the 36 types of models into piles 

according to how similar they perceived the models to be to one another (using an online data 

collection program).  Data in this form was amenable to Multidimensional Scaling (MDS).   An 

MDS of the similarity among types of models revealed three primary clusters, computational 

models, mathematical models and what was termed cultural models.  Within the computational 

cluster included agent based modeling, but also dynamic social network analysis and simply social 
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network models (See Figure 1).  So for the purposes of this paper we consider social networks 

odels and analysis to fall within the computational framework.    m
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Figure 1.  MDS of the similarity among types of models as perceived by NAS 
committee members.  
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The Potential for Error 
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Errors in network data can arise from a multitude of sources.  The way questions were framed, the 

manner in which network boundaries are specified, the willingness of respondents to answer 

questions, the manner in which data is aggregated, informant accuracy, the erroneous attribution of 

behaviors, to name a few, can all impact error in terms of missing data or even the presence of data 

that lacks validity and may be misleading.  These problems are even more pronounced in the 

national security context where data can come from a variety of sources all of varying reliability and 

the databases in which they are housed can be a mix of various measures at various levels.  As an 



 

article in Defense Update, an online defense magazine published in Israel, on targeting in networks 

for counter IED (http://defense-update.com/newscast/0308/news/news0703_iednetworks.htm) 

stated: 

In the modern and developed world, where most of those support networks operate, 
government agencies and the business sector generate unprecedented volumes of data. 
Customer profiles, organizational operational performance, and personal behavior of 
individuals are monitored by multiple service providers. Some data resides in structured 
form in databases or exists as real-time streams. Some exists in unstructured form, for 
example as e-mails, electronic documents or media files. Whatever the form, there exists 
huge potential to transform these data into relevant intelligence to improve business 
decision-making.  

Before the solution could be deployed, JIEDDO had to address various data challenges. 
Until recently, much of the data received from multiple sources in theater, from DOD and 
other U.S. government agencies, was not integrated or coordinated with data developed by 
other units or agencies, it usually remained unstructured or lacked a common format or 
vocabulary. Also, data quality was problematic because of the amount that was manually 
keyed or handwritten, the lack of standard format and templates, and the variety of sources.  

   
One problem with data that is critical for the validity of computational based network 

models is the inclusion of edges or links in network models when in fact they do not exist or can be 

mistakenly attributed to an ego (focal node) based on the behavior of other nodes in the network.  

This is particularly important in the national security context in that various sources of data (e.g., 

SIGINT, HUMINT) are used to establish the existence of a link in a model or analysis.  So, for 

example, Signal Intelligence (SIGINT) relies on observed linkages among electronic devices while 

Human Intelligence (HUMINT) relies on various human based sources for establishing the presence 

or absence of linkages among individuals.  Within each of these various domains there are various 

issues of data reliability and validity, but when combined a whole slew of other issues arise, 

particularly the assignment of devices to human actors in the network.  What is problematic is that 

analysis or model results of these networks are used to make life and death decisions about the 

targeting of individuals.    
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Towards a Science of Error in Social Networks 
 
Social network measures vary in their robustness in the face of error (Borgatti, Carley and 

Krackhardt, 2006).  A simple measure like degree centrality tends to be relatively robust while some 

path based measures such as betweenness centrality are more vulnerable to error. This is important 

in light of the fact that betweenness centrality reflects control and brokerage roles of an individual, a 

very important measure for identifying key nodes, possibly for targeting.  Figure 2 shows an example 

of the sensitivity of betweenness to the presence or absence of a single bridging tie or edge.  A 

missing tie between nodes 4 and 5 in the top figure would completely hide the brokering importance 

of these two nodes.  Conversely an erroneous commission of a tie between nodes between 3 and 8 

can lead to node 3 have more importance then it actually does in the network (e.g., attributing 

communication behaviors to 3 that are actually those of node 4).         

In an attempt to understand the impact of these omissions and commission errors on 

various network measures, Johnson, Boster and Holbert (1989) used a Monte Carlo simulation 

approach to study error in networks derived from snowball samples employing a fixed choice 

methodology.  An important finding of this study was that degree centrality was relatively robust 

under different sampling conditions.  Borgatti, Carley and Krackhardt (2006) have looked at the 

issue of the error afforded by omission and commission errors of both edges and nodes in the 

collection of network data.  They found that errors in various centrality measures resulting from 

random exclusion and inclusion of edges in random graphs varies as a function of characteristics of 

the network itself (e.g., density, sparseness) and accuracy of measures declines predictably with the 

amount of error introduced.  Although an important contribution to the problem it fails to directly 

address some of the issues raised here in two fundamental ways.  First, the implication of these 

errors needs to be more thoroughly explored in graphs of various types.  How these errors behave in 
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random graphs may be very different than how they behave in small world or scale free networks.  

Second, the focus of the errors has been at the network or macro level.  This includes things like 

density or aspects of the overall distribution of errors across a particular kind of centrality like, for 

example, betweenness centrality in a regression model.  There needs to be more of a focus on the 

error at the nodal or micro level to better understand the characteristics and implications of error in 

a targeting context. It is at the nodal level that targeting decisions are made so it is at the nodal level 

hat error should be better understood and modeled.   t

 

  Present  Absent 
1 0 0 
2 0 0 
3 0.15873 0 
4 0.095238

0.12698
0.380952 
0.428575 4 1 

6
7
8

0.039683
0

0.246032

0.095238 
0 

0.095238  

 

 
Figure 2.  Graphs showing the effect of an 
added tie on the importance of node 3 with 
the simple addition of a single edge with 
respect to betweenness centrality (above). 
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Figure 3.  An example of a network derived from a data mining program (SAS in http://defense-
update.com/newscast/0308/news/news0703_iednetworks.htm) and an Erdos-Renyi random graph 

ith the same number of nodes and density.  The graphs have very different structures that have 
mplications for the impact of data errors on analysis and modeling.   
w
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igure 4.  Degree distributions for the SAS text example and a comparable Erdos-Renyi random 
raph.   

Figures 3 and 4 show the implications of the how the differences in network structures may 

influence how error could impact any analysis.  Figure 4 shows two networks one derived from a 

datamining example (http://defenseupdate.com/newscast/0308/news/news0703_iednetworks.htm) 
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and the other an Erdos-Renyi random graph for a network of the same size and density as the 

former but links assigned at random.  Note that the two have wildly different structures with the 

data mining example have an extremely skewed degree distribution (something that might be 

considered scale free if in a larger network) while the random graph has a degree distribution that is 

more normally distributed.  As such missing edges or nodes would have a much greater impact in 

the first network then in the chain like structure of the second.     

 Compared to the collection of other types of data in the social sciences (e.g., attribute 

based survey data) the collection of social network data can be quite challenging.  A major threat to 

validity in social network research stems from problems of missing data that are due to a number of 

different sources at a number of different stages in the research process.  In addition, errors can 

arise from data (e.g., a network tie) that is erroneously included, or commission errors.  These 

sources of error all can lead to model misspecification or worse yet, the identification and targeting 

of actors in a network that are not important or critical to the function of that network, thereby 

wasting valuable resources or creating backfire effects (the targeting of innocent individuals turns 

hearts and minds).   

 One major contributor to missing data is non-response in network surveys (although this 

can be even more of a problem in data derived from interrogations).  Missing data can enter into the 

picture if the network boundaries are not properly specified on theoretical or other grounds. 

Network surveys are extremely susceptible to non-response bias in that missing actors and their 

links can affect structural and analytical outcomes at both the network and individual levels. 

Respondents can refuse participation, can refuse to answer some or all network survey questions due 

to such things as interviewee burden or question sensitivity and may drop out of a longitudinal study 

prematurely as a result.  
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  The design of the study and subsequent sample or instrument design (e.g., types and forms 

of relational questions) for a given social network problem and context can also be important in 

limiting threats to validity (and this can vary cross-culturally). Issues of respondent reliability and 

accuracy have clearly been shown to produce error of various kinds (but the error is often well 

behaved as discussed below).  

 We need to be aware of factors that minimize threats to validity in the collection of social 

network data, particularly in the complete network context and particularly in the security context. 

This becomes even more important as we use more methods of automated elicitation such as web 

scraping and other types of data mining. Network data can come from a variety of different sources 

but it generally boils down to a distinction between primary versus secondary types of data. 

Secondary sources are those that already exist somewhere in print (e.g., fish exchange records, 

historical marriage records) or can be found electronically (e.g., Enron emails, Social Networking 

pages, newspaper articles) using human based or machine based collection. Secondary data by its 

historical and/or fixed nature dictates and limits the type of relations and levels of measurement that 

can be used in the course of the research. Primary data collection allows a greater deal of flexibility 

in the type, measurement and number of relations to be studied.  

 The following paragraphs provide a discussion of some types of errors that are of concern.  

This is by no means an exhaustive list, but it does begin to address some of the more important 

types of errors found in data used in social network analysis and modeling, particularly in the 

national security context.  

Boundary specification errors:  When doing whole or complete network analysis there 

must be inclusion and exclusion rules so that social networks can be bounded for analysis.  In more 

theoretical work, the network is bounded by theoretical focus or the problem at hand.  So, the study 

of small group dynamics at a polar research station might bound the network to include only those 

 177 



 

actors that will winter-over together.  This doesn’t mean there are not other alters in an ego’s 

network (e.g., family that an actor emails, summer workers), it is just that for the purposes of the 

study the winter-overs are what constitutes the group. This boundary specification could be a threat 

to the validity of the study if the other types of relations not included in the study are actually 

important in accounting for variability in the dependent variable.  But the bounding of social 

networks in the national security context is not normally driven by theoretical concerns, but more 

practical concerns or may even be arbitrary.  It is important to note that these decisions will have an 

effect on both the presence and absence of edges and nodes in any analysis.    

Omission errors: Missing edges and nodes can have huge impact on errors in network 

assessments, particularly for some centrality measures used in the selection of nodes for targeting.  

These missing data can make networks appear to be more disconnected than they really are or make 

other nodes and edges in the network appear to be more important than they really are (as 

evidenced by the missing of a single tie between nodes 4 and 5 in Figure 2).    

Commission errors: Like omission errors the erroneous inclusion of nodes and edges can 

effect the ultimate determination of node level measures and the identification of key nodes (as is 

clear in Figure 2). 

Edge/node attribution errors:  Assigning a behavior or attributing something to either an 

edge or node in a network.  Miss assignment of a behavior to a node can yield attributed linkages in 

a network that in reality do not exist.   Although not central to the discussion on network models, 

attribution error is a common problem in the use of link analysis.  The mixing of what we call 1-

mode and 2-mode data can be problematic and lead to misattribution. 

Multiplex errors:  Social networks are multiplex.  That is an individual actor’s social 

network consists of family ties, friendship ties, work ties, recreation ties, coffee drinking ties, etc.  
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Caution should be taken in combining these ties or using one type of relation to infer something 

about the presence or absence of another type of relation.  

Data collection and retrospective errors:  Caution should be taken when using network 

data collected from individuals where the network elicitation question deals with reports of 

behavior, particularly on social interactions of a discreet nature.  So, for example, questions that of 

the kind “who are the people you interacted with yesterday in the plaza?” are notoriously prone to 

error. Bernard, Killworth and Sailer  (1977, 1980,1982 and Killworth and Bernard (1976 and 1979) 

(here collectively referred to as BKS) conducted a series of network studies on informant accuracy in 

social networks involving fraternity members, ham radio operators, and deaf people communicating 

with teletype machines to mention a few.  They basically found that people were inaccurate in their 

reporting of interactions with others.   Thus, ham radio operators, who kept logs of radio 

conversations, reported both omission and commission errors in their retrospective reporting of 

radio interactions.  BKS asked the operators to list all the people they talked to on the radio 

yesterday and they could check the accuracy of the reported communications with the actual 

communications.   

This research led to a fury of other research on the topic looking at the relationship between 

reports of network interactions and accuracy.  An important study by Freeman, Romney and 

Freeman (1987) and Romney and Freeman (1987) found that informants are more accurate in 

reporting long term patterns of behavior rather than discreet behaviors at some point in time.  They 

noted the participants in a colloquia series at University of California Irvine throughout the quarter.  

On the day after the last colloquium of the quarter the people who attended were asked to list all the 

participants present at the colloquium the day before.  There were inaccuracies as expected, but 

these inaccuracies were patterned and predictable.  Omission errors were primarily people who 

normally don’t attend the colloquium but happened to be at the last one, while commission errors 
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were primarily people who usually come to the colloquium but were there for the final one. Thus, 

individual informants were reporting more on what usually happens rather than on what happened 

during a specific colloquium.   So, the question that was asked at the beginning of this section 

should be more like “who are the people you usually interact with in the plaza?” or “who are the 

people you interacted most with in the plaza over the last two weeks?”  These reports of long-term 

patterns of behavior are much less prone to error.   

The implications for this in the national security context are simple.  Awareness of the way 

linkages between and among individuals is critical for assessing their potential accuracy.  If data was 

collected from individual’s interactions involving specific or well delineated time points, such self 

reports should be treated cautiously and triangulated against other sources of data.  The more recent 

research on ego biases in cognitive networks (Kumbasar, Romney and Batchelder (1994); 

Krackhardt (1987, 1990); Johnson and Orbach (2002)) has shown that some individuals in the 

network are more accurate about reporting linkages than others.  Active, more powerful nodes tend 

to be more accurate. These all have implications on methods for assessing and weighting the 

reliability and validity of network data and for fixing missing data problems (this doesn’t even begin 

to address issues of deception in social network data). 

Data management/data entry:  Errors due to data entry and transcription/ translation are 

well known in other analytical and modeling domains.  These can be even more problematic in the 

network context. These types of errors are well known but important nonetheless.   

Data fusion/aggregation:  Decisions often have to be made on aggregating data at 

different temporal, relational and spatial scales.  Such aggregations, if done improperly, can create 

errors at a variety of levels. For example, when aggregating longitudinal real time or streaming data 

for analysis important individual nodes and edges may be excluded or nodes and edges of lesser 

importance included that have lost their importance in the network.  As in the boundary 
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specification problem, there should be some guiding principles, preferably of a theoretical nature, 

for making aggregation decisions.      

Error multiplier effects: Errors can interact in ways to make any analytical outcome 

impossible to determine.  Thus, errors can propagate through the data making it impossible to know 

error impacts or even how one might go about dealing with error (e.g., model error).  

Error in secondary sources and data mining: Various forms of secondary source data 

have inherent biases and these potential biases should be considered in any analysis.    Secondary 

source data collection can be easier (data mining), but it can be fraught with errors at a variety of 

levels.  Examples of important questions include: Do dyadic ties in records have the same meaning 

(e.g., emails)?; Are nodes really the same? (Phones used in communication, although accurately 

reflect device to device dyads, may not be the same actors from one communication to the next); 

Does the observance of two individuals at same event infer a tie?; Are records temporally 

comparable, at the same scale, etc.?    

Often records actually document non-events (e.g., Congressional Record) or represent a 

reconstruction of the past or an event to meet some agenda making a group or a single actor look 

good in light of poor outcomes which may include scapegoating and false attribution). Thus, records 

may be biased in that they are constructed to fit some agenda or reflect actor biases (e.g., newspaper 

reports).  For example, Johnson in his work at the South Pole on small group dynamics reviewed 

manger’s end of year reports and found them to be riddled with inaccuracies.  It was understandable 

in that these reports were actually an attempt to put a more positive spin on the winter events to 

make the manager look good and to place blame for any problems on others.    

Formatting errors:  In data mining or web scraping efforts there are errors that can be due 

to differences in document or web site formatting that can lead to the over or under representation 

of terms, actors, attributes, etc. in the data retrieval process.  Care should be taken that any relations 
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assigned among nodes is not an artifact of formatting errors. In addition, web scraping and 

automated data mining methods should be scrutinized for consistency in the operationalization of 

important concepts. The bottom line is model quality is a function of data quality; garbage in 

arbage out.   g

 
Potential Solutions 
 
There needs to be a serious effort to understand the varying effects of errors in social network data 

on network model performance.  The work of Borgatti, Carley and Krackhardt (2006) and Johnson, 

Boster and Holbert (1989) should be expanded to look at how errors of various kinds behave across 

a family of network structures.   This line of analysis can include a further expansion of simulation 

efforts and at the more micro level of analysis various forms of sensitivity analysis to examine how 

errors of various types impact the robustness of measures for specific nodes.  This is a particularly 

important approach in that the robustness of network measures of targeted nodes can be 

determined to establish more confidence in any targeting decisions.  In addition, work on reliability 

analysis and more specifically on determining consensus and in estimating the correct answer from 

patterns of responses (or from different sources) may yield better estimates of various network 

measures under uncertainty (Romney, Weller, Batchelder 1986).   

Simulations: The types of simulations conducted by Borgatti, Carley, Krackghardt (2006) 

and Johnson, Boster and Holbert (1989) should be expanded and extended to a range of errors and 

types of network structures.  Johnson, Boster and Holbert (1989), for example, found that errors 

associated with differences in snowball sampling parameters could be modeled as quadratic 

functions in both hierarchical and non-hierarchical network structures.  In this case errors in 

sampling could be mathematically determined in predictable ways.  Similarly, Borgatti, Carley and 

Krackhardt (2006) were able to statistically model the random removal and placement of edges in 
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random graphs suggesting that confidence intervals could then be established for various estimates 

of network centralities.  This line of analysis needs to be expanded to include the effect of these 

kinds of omission and commission errors on other families of network structures such as small 

world networks, core-periphery networks, scale free networks, etc.          

Sensitivity Analysis:  Since targeting occurs at the individual node or micro level sensitivity 

analysis using a simulation approach may be more appropriate.  In this form of analysis the 

robustness of individual nodes with respect to various network measures can be determined though 

simulations in which links are randomly added and removed.  In the course of these repeated 

removals if there is little change in the network measures of interest then confidence in the structural 

importance of that node can be determined. Again, this may involve the construction of confidence 

intervals around the network estimate for a given node. Although not a panacea by any means, it 

begins at least to systematically address potential impact of errors on targeting decisions. However, 

there still needs to be caution in that the propagation of errors could make this a fool’s errand given 

the already deep problems with the data.   This only will help determine the stability of network 

measures as the data is perturbed.  This, however, does not fix any other data problems that 

occurred earlier in the data collection or fusion process.     

 Reliability Theory-Bayesian Weighting: Lessons learned from reliability and validity in 

data collection can be used to help assess the validity of network ties and actors in producing data 

sets (e.g., using Bayesian weighting to better estimate the presence or absence of nodes and ties).  

Following the work of Romney, Weller and Batchelder (1986) in their work on a formal model 

(Cultural Consensus Model (CCM)) for estimating the culturally correct answers for cultural data 

(e.g., beliefs) from patterns of responses from informants, a similar approach can help in better 

estimating the probability of a node or tie or edge is correct (e.g., present/absent).  The basic idea is 

that for the determination of the presence or absence of ties or nodes there are a number of given 

 183 



 

sources of data (i.e., the equivalent of informants in the CCM).  Each source provides information 

on the presence or absence of a given node or edge.  There is probably little doubt that the sources 

will have an overall consensus across all the nodes and edges (fit the consensus model in CCM 

parlance), but there may be disagreement across sources with respect to some nodes and edges.  

Following the CCM, data sources that more consistently get the presence or absence correct for 

highly agreed upon nodes and edges will be weighted more in determining the presence or absence 

of nodes and edges in the cases of higher uncertainty.  This Bayesian approach has worked well for 

estimating the culturally correct answers in cultural data and seems to have great potential for being 

adapted for estimating node or edge presence or absence in the social network case when multiple 

sources of data are involved. So, for example, for a given context there may be multiple sources of 

data from DoD agencies, from nongovernmental sources, from coalition forces, from signal 

intelligence and other forms of human intelligence.  Each of these sources are like cultural 

informants in the CCM approach and the “correct” answer can be estimated by aggregating and 

modeling across sources leading to a much improved means for determining confidence in targeting 

decisions.  Although the formal model at present works only with binary data (e.g., present/absent) 

the model is being extended to continuous data so that interval level measure and above for edge or 

tie strength can also be potentially estimated (e.g., the amount of dollars flowing between two 

actors).          

Awareness: No matter how many tools we produce to better determine, estimate and deal 

with errors in social network data it is important not to loose sight of the critically important role of 

vigilance and hard work in stopping errors at the very beginning of the data collection process.  

However, even with such hyper awareness there will inevitably be some error and we should have 

the proper tools at hand to deal with them.     
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Discussion and Recommendations 
 

Social network analysis and modeling are powerful tools.  But extreme caution should be used in 

interpreting any analysis unless issues of data quality are seriously considered. This is particularly true 

for the security context where data errors may have grave implications.  Efforts need to focus on 

developing a science of errors in the network context.  This will involve theoretical research 

exploring and modeling the impact of data errors on network model performance.  Further, this will 

require the development of software tools for conducting error simulations and nodal sensitivity 

analysis that can be readily used by analysts as well as modelers.   

 The CCM approach should be adapted for use in social networks error management and 

mitigation also requiring the adaptation of existing software or the development of new software.  In 

achieving these ends, the enterprise to further advance a science of errors can be funded by such 

DoD programs as the Multiple University Research Initiative (MURI).  These can followed up by 

the development of software tools by such DoD and other Federal programs with national security 

focus using STTR or SBIR funding.   It is only through a concerted effort in the development of a 

science of errors in social network data and modeling that application of network analysis can 

provide a dependable tool for solving national security problems.    

 

 

 185 



 

 
References 

 
Bernard, H.R. and P.D. Killworth. 1977. "Informant Accuracy in Social Network Data II."  

Human Communications Research. 4(1): 3-18. 
 
Bernard, H.R., P.D. Killworth and L. Sailer. 1980. "Informant Accuracy in Social Network Data  

IV: A Comparison of Clique-Level Structure in Behavioral and Cognitive Data." Social 
Networks. 2: 191-218. 

 
Bernard, H.R., P.D. Killworth and L. Sailer. 1982. "Informant Accuracy in Social Network Data  

V: An Experimental Attempt to Predict Actual Communication from Recall Data." Social 
Science Research. 11:30-66. 

 
Borgatti, S, K Carley, and D Krackhardt. 2006 “On the Robustness of Centrality Measures Under 

Conditions of Missing Data.”  Social Networks 28: 124-136. 
 
Boster, J.S., J.C. Johnson and S.C. Weller. 1987. "Social Position and Shared Knowledge: Actor's  

Perceptions of Status, Role and  Social Structure." Social Networks 9:375-387. 
 
Freeman, L.C. and A.K. Romney. 1987. "Words, Deeds and Social Structure: A Preliminary  

Study of the Reliability of Informants." Human Organization. 46(4): 330-334. 
 
Freeman, L.C and C.M Webster.  1994. “Interpersonal Proximity in Social and Cognitive Space. 
Social Cognition Vol 

 12, Number 3:223-231. 
 
Freeman, L.C., A.K. Romney and S.C. Freeman. 1987. "Cognitive Structure and Informant  

Accuracy." American Anthropologist 89: 310-325. 
 
Johnson J C, J. Boster, and L. Palinkas. "Social Roles and the Evolution of Networks in Isolated and 

Extreme Environments. The Journal of Mathematical Sociology Volume 27/Numbers2-3, 
(2003): pp. 89-122. 

 
Johnson J C, J. Boster, and L. Palinkas. "Social Roles and the Evolution of Networks in Isolated and 

Extreme Environments. The Journal of Mathematical Sociology Volume 27/Numbers2-3, 
(2003): pp. 89-122. .  

 
Jjohnson, J C and M.K. Orbach. "Perceiving the Political Landscape: Ego Biases in Cognitive  

Political Networks". Social Networks 24 (2002) 291-310.  
 
Johnson, J C,  J.S. Boster, and D. Holbert. “Estimating Relational Attributes From Snowball 
Samples Through Simulation,” Social Networks 11:135-158, 1989. 
 
Killworth, P.D. and H.R. Bernard. 1976. "Informant Accuracy in Social Network Data." Human  

Organization. 35(3): 269-286. 
 

 186 



 

Killworth, P.D. and H.R. Bernard. 1979/80. "Informant Accuracy in Social Network Data III: A  
Comparison of Triadic Structure in Behavioral and Cognitive Data." Social Networks. 2: 10-
46. 

 
Krackhardt, D. 1987. "Cognitive Social Structures." Social Networks. 9:109-34. 
 
Krackhardt, D. 1990. "Assessing the Political Landscape: Structure, Cognition, and Power in  

Organizations."  Administrative Science Quarterly. 35:342-369. 
 
Kumbasar, E.,  A.K. Romney and W. Batchelder. 1994. "Systematic Biases in Social Perception."  

American Journal of Sociology. 100(2): 477-505. 
 
Romney, A.K. and K. Faust. 1982. "Predicting the structure of a communications network from  

recalled data." Social Networks.  4:285-304. 
 
Romney, A.K. and Susan Weller. 1984. "Predicting informant accuracy from patterns of recall  

among individuals." Social Networks. 6: 59-78. 
 
R

 

omney, A.K., Weller, S. and Batchelder, W.H., 1986. Culture as a Consensus: A Theory of Culture 
and Informant Accuracy, American Anthropologist 88:313-338. 

 

 187 



 

 188 



 

Lucy Resnyansky, Social Modeling and Simulation for National Security 
Decision-making: Ethical Challenges 

 
Presented at the DTRA/Sandia Workshop on Challenges in Computational Social Science. Santa Fe, 

New Mexico. October 25-28, 2010. 
 

 
ABSTRACT 

This paper aims to reveal the ethical challenges that emerge from the use of social Modeling and Simulation (M&S) 
within a National Security (NS) context, and to understand how they can be addressed. In order to achieve this 
purpose, the processes of intelligence analysis and decision-making are approached as a socio-cultural activity mediated 
by tools and embedded into an intersection of professional, organizational, and epistemological cultures. The 
construction of ‘M&S within the NS context’ as an object of ethics-focused research draws upon the discussion of the 
implications of using new Information and Communications Technologies (ICTs) within the NS context, as well as a 
meta-methodological analysis of the formation of social M&S as a discipline. The ethical challenges which emerge due 
to the use of modelling and simulation differ from those created due to the use of technologies enabling surveillance and 
data extraction within the NS environment. In the latter case, the primary concern is the physical or moral harm to 
citizens, and solutions are sought within the legal regulations area. In the case of analytical activity being supported by 
modeling and simulation tools, the ethical issues may be less obvious since they relate to the quality of analysis and 
decision-making within an organization. This kind of ethical challenge can be most effectively addressed in the 
research, development and assessment stages.  

 

INTRODUCTION 
 
The application of mathematical and computational methods to the analysis of social phenomena is 
believed to be useful within different areas of practice, including the National Security (NS) domain [1, 
2, 3, 4, 5]. For example, social Modeling and Simulation (M&S) can help analysts explore the behavior 
of cultural groups [6] and political processes [7], and train staff to communicate effectively in cross-
cultural interaction [8]. The use of M&S for the analysis of social phenomena seems to be a good way to 
introduce social science into the NS context. However, the implementation of social M&S may have 
significant consequences for the NS analysis and decision-making practice. Therefore, a critical 
reflection on the socio-cultural and ethical implications of this process must become an essential part of 
the development and implementation of social M&S within the NS area [9]. Due to the specific nature 
of social M&S, it is difficult to recognise emerging ethical challenges and to locate them within the 
development-technology-practice nexus. M&S tools are often promoted as a solution to the ethical 
problems that might emerge in in vivo experimental studies of social systems [10]. This view is reflected, 
for example, in the following definition of Computational Social Science (CSS):  
 

CSS is an emerging, hybrid discipline that is focused on rendering social theory into computational 
constructs for the following purposes: To investigate and experiment in situations where direct 
observation of human behaviour is not possible or not ethical. [11]. 

 
Hypothetically speaking, social M&S is not immune to the moral problems that are intrinsic to research 
which involves human beings. In Stanislaw Lem’s Cyberiada, two genius robotic engineers are employed 
to create a model of a perfect world. The constructors simulate a series of micro-societies subject to 
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computational experimentation, in order to discover a formula of total happiness. They are 
experimenting with a myriad of combinations of social conditions and variables. They create artificial 
societies based on all possible sets of values – religious, secular, hedonistic, and so on. The agents’ 
motivations vary from profoundly egoistic to purely altruistic. The most sophisticated mathematical 
logic and computational algorithms are used. Nevertheless, the simulated social systems ended in all 
kinds of social catastrophes and tragedies. The constructors conclude that the problem of total 
happiness has no solution. Finally, the constructors become preoccupied entirely with an ethical 
problem emerging from the fact that, despite being artificially created and programmed, the agents did 
experience real suffering.  
 
Those aware of the current developments within the area of social M&S, know that it is far below the 
level achieved by Lem’s characters. It is true that the developers of social M&S tools do not need to 
worry about moral issues that might arise when humans become an object of research [12]. Also, the 
user of the M&S tools seems to have no need to worry about ethics. Unlike surveillance, data mining 
and identification technologies, M&S tools do not intrude into the private lives of citizens and the 
activities of organizations. These tools are meant for ‘internal consumption’, they are offered as 
capabilities supporting the processes of analysis and decision-making. Nevertheless, while being able to 
provide a solution to some ethical challenges related to the exploration of social and cultural 
phenomena, social M&S may create new ethical challenges.  
 
The purpose of this paper is to understand what kind of ethical issues are emerging when social M&S is 
used within the NS area. In order to achieve this, the processes of intelligence analysis and decision-
making are approached as a social activity mediated by tools and embedded into an intersection of 
different professional, organizational, and epistemological cultures.  
 
This study is grounded within a system-activity theory, a logico-philosophical model of interdisciplinary 
research [13, 14], the concepts of social modeling and Information and Communications Technologies 
(ICTs)-mediated collaboration as systems of social activity [15. 16], and the concept of technology-
practice as an activity involving cultural (values and ethical codes), organizational and technical 
(knowledge, tools, and resources) aspects [17]. The construction of social M&S as an object of ethics is 
grounded within the broader research on computing and ethics [18, 19, 20, 21, 22, 23], the implications 
of new ICTs within the NS context, intelligence analysis and policy making [[24, 25, 26, 27, 28, 29, 30], 
and a meta-analysis of the emerging disciplinary field of social M&S [5, 9, 31, 32]. 
 
ETHICS, TECHNOLOGY, AND NATIONAL SECURITY  
 
Understanding of ethical issues emergent due to the use of technology may vary, depending on the 
ethical perspective. Ethical issues can be approached either within a teleological perspective (the ethics 
of ends) or deontological (the ethics of duty) [18]. The teleological perspective on ethical reasoning is 
represented, for example, by utilitarianism. The deontological perspective is represented by pluralism (a 
duty-based approach) and contractarianism (a rights-based approach). Ethical reasoning is not entirely 
subjective. By its nature, it is reasoning in relation to objective criteria, such as basic human rights, 
maximizing social good, and so forth [18]. At the same time, ethical issues are context- and situation-
specific, and, in the case of technology, are determined by the nature of technological tools (Table 1).  
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Table 3 Information Technology: Ethical issues 

 
Technologies 

 
Application 

  
Ethical issues 

 
Solutions 
 

 
Technologies 
enabling access to 
information 
(e.g., Internet) 

 
Scholarly publishing 
Media  
Entertainment 
Research  
Collaboration 

 
Information safety 
Intellectual property 
Social injustice: unequal 
access to information 
Inappropriate use of 
knowledge 
 

 
Legal regulations  
Economic measures 
Organizational policies 
 

 
Technologies 
enabling 
surveillance, 
identification, 
tracking, and data 
mining and fusion 

 
National security 
Intelligence 
Business  
 
 

 
Privacy 
Citizen rights 
Democratic values and 
freedoms 
Identity fraud 
Workplace relationships 
 

 
Legal regulations 
Law enforcement 
National policies 
Organizational policies 
 
 

 
Technologies 
enabling social 
interaction  

 
Social networks 
Virtual reality 

 
Privacy 
False identity 
Moral values  
Psychological violence 
 

 
Legal regulations 
Codes of ethics 
regulating intragroup 
and interpersonal 
relationships 
Cultural change 
 

 
Technologies 
enabling data 
analysis and 
decision-making  

 
Finances 
Medicine 
Social work 
Military operations 
Intelligence  
National security 
Administration 
Social research 
 

 
Responsibility  
Accountability 
Workplace: loss of jobs 
Client-vendor 
relationships 
 
 

 
Professional 
(engineering) ethics 
Organizational policies 
 
 

 
In the case of information technology, the usual foci of ethical examination are vendor-client 
relations [18]; privacy, civil liberties and rights [20]; social relationships in virtual space [12, 33]; 
intellectual property and information security [21]; and the use of knowledge in electronic 
environment [34, 35, 36, 37]. Also, ethical issues emerge due to the impact of new technologies in 
the workplace, such as: the potential loss of jobs, monitoring of employees’ activities, and the 
reconfiguration of power relations between employees and managers [19, 38]. In the case of expert 
systems used to support decision-making practices, the accountability and responsibility issue is the 
major ethical challenge. These practices vary from health care and child-protection risk assessment 
and emergency services to military operations analysis [38, 39, 40]. One of the consequences of 
using computational systems in decision-making is that the autonomy of the decision-maker is 
significantly affected. It is not always possible to understand who should be responsible for the 
decisions. Is it the user or the manager who influenced the product choice and implementation? Or 
should the responsibility be located within the design area, because “[c]omputer optimization 
algorithms like those needed to solve problems in large spaces with many variables and constraints 
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can only take into account those quantifiable variables that were deemed to be critical in early design 
stages” [40].  
 
Ethics is linked to such fundamental concepts of market-based economy as quality, trust and 
contract. Ethics is of enormous importance for IT industry, and is part of the IT curriculum. The 
main purpose of computer ethics courses is to instruct students in how to address potential ethical 
and legal issues that may emerge due to the use of information technologies. The problem is that 
there can be no definite instruction on how to conduct ethical reasoning. Rather, general codes of 
professional (engineering) ethics are offered, together with specific cases as examples to guide the 
ethical reasoning. The most practical advice seems to be the following: interpretation of ethical 
issues depends on how a piece of technology is conceptualized. For example, in order to conduct 
ethical reasoning regarding the producer’s responsibility, it is essential if a piece of software is 
conceptualized as a product or a service. In the case of electronic information, court’s decisions may 
differ depending on whether a database was approached as a book or a technology [18]. 
 
The literature on computing ethics is addressed mainly to the IT vendors. Within the business 
perspective, the main concerns are with liability and fair compensation policies. Solutions for ethical 
problems are sought within the law/policy/code areas. It is a common perception that the 
traditional ethical framework can assist in solving the ethical challenges caused by the ICTs.57 The 
business-oriented literature on computing ethics highlights the role of managers who make decisions 
about the implementation of particular capabilities. However, the reasoning behind their decisions 
seems to be influenced by utilitarian and egoistic motives. The literature highlights corporate loss or 
manager’s career as the consequences of offering low-quality software products and services, and 
warns against over advertising and overselling products as counter-productive for the industry [18]. 
Such activities as the design of software, or the choice of ‘expert knowledge’ to be embodied into 
expert systems, are practically beyond the realm of literature addressed to the IT industry. In order 
to position ethics outside the design area, an image is cultivated of software as an extremely complex 
technology in which bugs and fallacies are unavoidable in spite of genuine efforts to fix them.  
 
Within the national security context, the issue of ethics has been discussed in relation to the use of 
new technologies enabling identification and surveillance. The implementation of such technologies 
has generated ethical concerns within different social and professional groups, including civil 
liberties advocates, regulatory agencies, software developers, health care professionals, the e-
commerce community, political scientists, and others [24]. One of the most debated ethical issues is 
the impact of new technologies on citizen rights and freedoms. This discussion draws upon a legal 
and political discourse on the nature of the democratic state and its relationships with the individual 
[25]. It has been argued that new threats make it necessary to re-examine the meaning and value of 
individual privacy in exchange for promises of safety and security. Also, the concept of privacy has 
to be re-examined, in order to reflect the realities of the digital society. Accordingly, new legal 
regulations, organizational policies, and codes of ethics may need to be developed. 
 
Issues such as responsibility and over advertising are also quite relevant within the NS context. ICTs 
have become a participant in data gathering – hence, in analytical and decision-making processes. 
Many activities previously delegated to people are now performed by computational systems. For 
example, the level of danger presented by an individual has previously been assessed by people. In 

                                                 
57 However, in the case of the Internet, for example, it is technology that is claimed to be a better solution to ethical 
problems (privacy, in particular) than government regulation [33]. 
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the past, this assessment could be based on the data provided by someone who monitored the 
‘moral health’ of the community residing in geographical proximity; the threat assessment was made 
by intelligence professionals who identified potentially threatening actors and used up-to-date 
technology to obtain evidence substantiating their conclusions  [41]. The new ICTs are introducing a 
radically different strategy [42]. It has been argued that the user is encouraged to identify a 
threatening actor on the basis of evidence extracted from data that can be accessed and processed 
with the help of the data gathering technological tools. It is, of course, recognized that the power of 
information technology has to be applied thoughtfully and that technology helps reveal possibilities 
that should be examined and analyzed by humans. However, it is also necessary to remember the 
logic of technological determinism [33]. ICTs are transforming information consumption on such a 
fundamental level that their effects can still be hidden from current generations [43, 44, 45, 46, 47, 
48]. Technology facilitates access to information about individuals and organizations. However, it 
may not be the high-quality, meaningful, ‘distilled’ knowledge about the community that could have 
been obtained by a human observer [42]. Uncritical reliance on technological capabilities can have a 
negative effect on NS practitioners’ ability to perform their duties and provide a secure environment 
for the general community [26].  
 
ICTs have provided an unprecedented opportunity for data gathering, which can be of great help in 
countering threats related to political violence. At the same time, uncritical implementation of new 
data gathering technologies may result in the range of actors subject to monitoring being restricted 
to those who have access to a computer and possess a digital identity [49]. The problem of data 
fusion has not been solved completely – meanwhile, in popular discourses on technology, such as 
found in the media, the ICTs-enhanced data gathering is often portrayed as a way of knowing 
everything about everybody [50]. The naturalization of this opinion within the NS context may 
result in the illusion of security. Therefore, the software engineering community is encouraged to 
behave responsibly and not offer ineffective measures and tools in the name of counter-terrorism 
[49]. This is a noble purpose. The question remains: how do we know that an offered solution is 
going to be effective rather than counter-productive? This question relates to ethics but answering 
these kinds of questions cannot be a matter of individual moral choice. They should be answered on 
the basis of a technically sound assessment guided by professional codes of ethics and clearly 
identified criteria [51]. The codes and criteria, however, need to be linked to specific contexts and 
technologies. Rather than being approached in terms of a contest between abstract moral and ethical 
principles and norms, the use of digital technologies within a NS context should be approached as a 
historically evolving system of social activity characterized by the dynamics of participants’ roles and 
power relations, and shaped by professional ethos, organizational culture, and political conjuncture.  
 
To summarize, the new ICTs can generate different kinds of ethical challenges. Making those ethical 
challenges visible is a complex task. All the more complex is an understanding of how those 
challenges can be resolved. Things that may appear as having nothing to do with ethics in the 
development stage may contribute to the emergence of ethical challenges in the stages of 
implementation and use. Ethical issues clearly seen in the process of use may appear not to have 
roots within the development stage. This makes it difficult to develop policies and recommendations 
catering to specific actors. It is hard to even identify all of the various actors and factors that might 
contribute to the emergence of ethical problems, or to offer a plausible solution. In order to 
understand how to address the ethical challenges emerging due to the use of social M&S within the 
NS decision-making context, the following research tasks need to be completed. First, it is necessary 
to understand the role of M&S within this context – should it be approached as a product or a 
service? As a technology or an activity? Second, it is necessary to reveal the range of participants 

 193 



 

whose activity and relationships will be affected by the introduction of the M&S tools. Finally, it is 
necessary to approach the development of social M&S capabilities as a locus of ethics-related issues.  
 

SOCIAL MODELING AND SIMULATION IN A NATIONAL SECURITY CONTEXT – 
AN INTERSECTION OF CULTURES 
 

M&S has become a recognized professional discipline, which has made it necessary to address the issues 
emerging from the extended use of M&S within different practices, and to develop a professional code 
of conduct that would regulate the relationships between simulationists and users [52]. Within the 
discipline-formation perspective, M&S is approached in terms of “the tasks that are typically carried out 
by a modeling and simulation practitioner” and in terms of “the lifecycle of a typical modeling and 
simulation project,” and simulation is defined as “goal-directed experimentation with dynamic models” 
[52]. This understanding of M&S reflects the internal specificity of M&S discipline vis-à-vis Physical 
Sciences, Mathematics, Psychology, and so forth. 
 
This discipline-focused concept of M&S is used as a basis for the formulation of a code of ethics for 
M&S professionals (i.e., software developers) [53]. The code aims at helping the M&S professionals 
behave in an ethically responsible way. The principles of professional ethics are supposed to be 
universally applicable. However, it is difficult to apply those general recommendations and regulations 
even within those areas in which models and simulations have been used for a long time, such as 
finance and medicine [54]. It is not clear how to apply them to such a specific case as the development 
of social M&S tools to support NS analysis and decision-making. In order to be applied within this area, 
the professional code of ethics needs to be reformulated in terms which reflect the specificity of NS 
decision-making. Also, in order to answer the ethical challenges emerging due to the use of social M&S 
within NS area, a piece of technology needs to be approached as an active participant of a system of 
social activity [16, 55, 56, 57].  
 
The NS area is an intersection of such diverse cultures as social research, engineering, computational 
science, intelligence business, political decision-making, bureaucracy and management. Depending on 
the configuration of interacting cultures, different aspects of ethics may become relevant (Figure 1). 
Ethical awareness can vary from high to low, according to the participants’ visions of their roles, their 
interpretations of NS goals, and their professional ethos and epistemological mindsets. The 
transformative impact of social M&S results from the fact that it introduces quantitative methodology 
and computational techniques of information processing and knowledge representation.  
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Figure 1 Social M&S within the NS context: a piece of technology, a research method, and a participant of social 
interaction 

 

In terms of work process, the NS-related analysis and decision-making can be understood as the flow of 
information. The process can be described by the concept of intelligence cycle [27].  
 

The intelligence cycle starts with decision-maker information requirements levied on intelligence 
collection capabilities, the processing of the collected raw intelligence and transmission of this 
processed material to analysts who decipher its meaning, and relay that understanding back to the 
decision-makers, who then levy additional requirements. [58, p. 131].  

 
According to intelligence researchers, the primary role for technology within the intelligence area seems 
to be that of assisting data collection, such as machine translation. Information overload is a good 
reason for using data mining and aggregation tools. There is, however, a concern that even these kinds 
of tools may be inadequate and limiting to the analysis [28]. When it comes to analysis, technological 
tools seem out of place, on the grounds that intelligence analysis is more like an art. It is “an intellectual 
process based on the application of human thought and judgment” [59, p. 67]. There is a fear that 
intelligence analysts can be replaced by technology, and that the use of analytic tools may have 
devastating consequences for the quality of intelligence analysis and, consequently, can negatively affect 
decision-making.  
 
From the organizational perspective, however, the human nature of intelligence analysis and decision-
making may generate serious problems. Currently, the analyst’s head is the locus of expertise and 
institutional memory. At the organization level, this generates such problems as the 
compartmentalization of knowledge and the failure to share information [60]. Continuous attempts of 
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organizational reforms proved to be ineffective, due to the paradoxes intrinsic to any organization, such 
as trade-offs between managerial control and the flow of information: 
 

Efforts to improve managerial control and lines of accountability [60, p. 126] require boundaries 
but boundaries block the flow of information. Flexible systems maximize the organization’s ability 
to obtain information but create an environment in which coordination is difficult limiting the 
effective flow of information. A similar trade-off exists with regard to delegation of authority. 
Secrecy is highly valued and argues for compartmentalization which, in turn, limits flexibility and 
information flow while increasing moral hazard and transaction costs. [60, pp. 126-127] 

 
In this situation, technological solutions may appear quite appropriate and attractive.  Proposed 
technological solutions involve, for example, the creation of databases that can become a new locus of 
expertise and institutional memory. However, the possibility of introducing such technological solutions 
may be interpreted by analysts as loss of the monopoly of expertise, and may generate uncertainty about 
tools’ impact on the ways in which analysts usually work [59].  
 
The further from the stage of data collection, the less significant seems to be the place assigned to 
technological tools. The final product of intelligence analysis is the assessment text provided to policy 
makers to read and base their decisions upon. While intelligence researchers tend to locate analysis in 
the same semantic field as art and imagination (the activities that can be somehow ‘assisted’ by 
technology), the activity of decision-making is clearly separate from this field as being a highly 
politicized area.  Nevertheless, an examination of the intelligence cycle can show that there is a place for 
technological solutions enabling the process of analysis and, most importantly, enabling intelligence 
analysts to make the results of their activity more consumable for the decision- and policy-maker.  
 
For example, the analytic process should incorporate alternative (‘red team’) analyses. Meanwhile, 
analysts cannot be expected to possess an equal ability to overcome cognitive biases. They may even 
become captives of their own analytic creations – images of societies or adversaries that they created, 
which may result in discarding evidences that do not correspond to those images [59]. Texts of 
assessments should include views that challenge the dominant assumptions. Incorporation of alternative 
views means that a text of assessment should become, using the literary theory terms, a ‘dialogical,’ 
‘polyphonic’ text characterized by heteroglossia (simultaneous presence and interaction of multiple 
voices) [61, 62]. Creating such a text requires outstanding writing skills; the history of world literature 
knows only a few authors who could work in this genre. Alternatively, the conventions of academic 
argumentative writing can be used, enabling the author to explicitly identify the boundaries of different 
approaches exposed within the text [63]. Consuming such kinds of texts requires for the reader to be 
socialized into advanced literacy cultures.  This may not be the case when texts of assessments are 
consumed within the policy-making area.58  It is vital to represent analytical results in a way that will 
make them consumable for decision makers. The analytical results should be reinterpreted in ‘layman’ 
terms, presented in a succinct and ‘straight to the point’ format, and delivered to the addressee in oral or 
visual mode [26, 64].  
 

Government intelligence and information systems spend a lot of time paring back large volumes 
of empirical data into short, digestible forms, gleaning the strategic message for the most senior 
government officials, and gauging the absorptive capacity of information users at different levels 

                                                 
58 See, for example, Treverton’s chapter ‘The intelligence of policy’ [26, pp. 177-215], and Gill and Phythian’s chapter 
‘What do they do with the information gathered?’ [27, pp. 82-102].  
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of government. Aligning the mutual expectations and interactions between information experts 
and decision-makers remains an elusive goal. [65, p. 39]. 

 
Observations on the cultural differences between the intelligence and policy-making communities are of 
particular relevance for an understanding of the place of social M&S within the NS decision-making 
area. The relationships within the intelligence-policy nexus, according to some prominent authors in this 
area, can be better described as ‘misconnection’. An impressive picture of the dramatic relationships 
between intelligence analysts and policy-makers can be found in Treverton [26], who refers to analysts 
and policy officials as members of different tribes. He maintains that intelligence analysts want to think and 
to understand, not to act. Policy officials are absorbed in here; they come from business or academia to 
act, to make something happen. They are in the decision-making position for a relatively short period of 
time, which encourages them to take a shorter view of a problem.  Intelligence “is still a written culture, 
while politics, especially at the top, is mostly oral” [p. 191]. “In these circumstances, most of so-called 
finished intelligence – that is, analyses established between covers with elegant graphics… – would stay 
in the pile” [p. 191].  
 
In a succinct overview of the most recent literature on intelligence and NS decision-making, Mark 
Phythian [59] highlights the following differences. The intelligence community is characterized by 
resistance to out-sourcing analysis and to bureaucracies. It tries to avoid the risk of politicization 
because it can compromise the objectivity of their assessments. Policy-makers, on the other hand, tend 
to form policy preferences on the basis of ideology rather than intelligence analysis, and may support 
their decisions by evidence from all sorts of sources. Their prioritization of evidence is selective, based 
on their former experiences and often aims to support their pre-existing views. Therefore, in order to 
deliver the analytical results to the policy-makers, it is recommended that analysts know more about 
their customers’ background and expertise. The problem is that intelligence analysts do not like “to be 
entrepreneurs in finding ways to get policymakers to pay attention to their analyses” [26, p. 180].  
 
There is a definite place for such capability as social M&S within this picture. It can become a capability 
enabling both the exploration of social reality, and the communication of the knowledge to the 
decision-maker.  
 
Within the intelligence analysis and decision-making processes, the culture of exploration through 
‘experimentation’ needs to be promoted, as numerous examinations of specific cases of intelligence 
failures have indicated [27, 28, 66, 67]. The affirmation of the value of experimentation within the 
intelligence and decision-making can provide the modeling community with more definite criteria for 
the assessment of the social M&S tools as a means enabling explanation rather than prediction [68]. At 
the same time, it is necessary to become aware of the potential impact of this kind of analytical 
capability on the NS decision-making. In decision-making, it is important to base one’s choice on 
objective data. Within a NS context, the provision of objective and impartial information is considered 
the main purpose of intelligence. A rigorous and elaborate system ensuring the reliability and credibility 
of intelligence information had been developed. At present, however, the intelligence business is 
undergoing a paradigmatic change [26, 27, 28, 29, 30, 69]. Intelligence is not only about surveillance and 
data collection from secretive sources. Open sources of data, including the Internet, play an important 
role in intelligence data gathering and analysis. In the new information environment, the role of 
intelligence and the relationships within the intelligence-policy nexus have changed. The strict 
boundaries between intelligence and political decision-making are disappearing. The intelligence 
profession needs to re-examine the concept of data as objective facts that exist independently from the 
observer [70].  
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The nature of new threats and the changing information landscape have made it worthwhile to 
introduce social science into the NS analysis and decision-making area. At the same time, there is a 
certain prejudice against ‘soft science’ methods. This can be explained by the strong influence of the 
positivist mindset within the intelligence area. Also, this can be explained by the fact that physical 
sciences are often (and, at times, mistakenly) perceived as an ideal pattern of objective and rigorous 
analysis. In this situation, social M&S may be perceived as an effective solution. M&S is believed to 
represent scientific methods in a way that is more recognizable and meaningful to a non-specialist [31]. 
This makes M&S a good way to introduce scientific rigor into a practice. In particular, M&S may seem a 
good way to introduce social science into practice by re-representing it with the means of a formalized 
discourse. This discourse has been portrayed as objective and rigorous within the modern culture [71]. 
One of the ethics-relevant implications is that the very use of M&S may strengthen the practitioners’ 
belief that their decisions are grounded within a rigorous scientific analysis of objective facts. However, 
it would be unethical to encourage the idea that sound understanding of socio-cultural processes can be 
achieved only through the use of the M&S tools. Rather, it is necessary to educate practitioners about 
the transformative potential of these tools. The practitioners should realize that a profound 
understanding of social science methodology is needed in order to use social M&S tools.  
 
DEVELOPMENT OF MODELING AND SIMULATION TOOLS: ETHICAL ASPECTS  
 

Unlike more established areas such as M&S for medicine, financial institutions, and management, 
social M&S for NS is still in its formation stage [9, 15]. This stage is characterized by a negotiation of 
the roles of natural, computational and social sciences. The foci of discussion include the difference 
between the object of research in natural and social sciences; the applicability of formal methods to 
the analysis of social phenomena; and the epistemological status of experimental study vs. cultural 
and theoretical insights. In spite of the diversity of opinions, the modeling community stands on the 
same ground regarding the issue that needs to be discussed. It is mainly about ‘how’ to analyze social 
phenomena. Here, epistemology and methodology seem to be more relevant than ethics. However, 
the development of M&S tools for socio-cultural analysis is also a social practice characterized by a 
re-negotiation of roles and power relations within interdisciplinary teams, and between researchers 
and developers and different levels of management [9, 72]. Organizational dynamics and 
interpersonal relationships between members of a multidisciplinary team are manifestations of the 
competition or collaborative interaction between different fields of knowledge and epistemological 
traditions. Social M&S requires a profound transformation of knowledge provided by the involved 
participants. In the process of this transformation, ethical issues related to use of knowledge begin 
playing a significant part.  
 
The practitioners are interested in ‘what’ and ‘what for’ questions, while the developers of M&S 
tools tend to focus on the ‘how’ (methods and techniques): 
 

Just like Galileo exploited the telescope as the enabling instrument for observing and gaining a 
far deeper and empirically truthful understanding of the physical universe, social scientists and 
policy analysts should exploit the advanced and increasingly powerful instruments of 
computation to see beyond the visible spectrum available through the traditional disciplines.  
[32, p. 260]  
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This is not to say that the developers ignore the practitioner needs. On the contrary, the common 
opinion is that the development of models should be governed by the user’s needs and purposes.59 
However, it is not easy to implement this general declaration in the form of case-specific research 
questions and conceptual models. As a result, a model may help answer questions that can be 
answered within a chosen method rather than those that the practitioner has to answer. On the 
other hand, blindly following the client’s wishes is not the best strategy either. M&S tools need to be 
client-oriented. However, this does not mean that the client’s vision of the problem should remain 
exempt from critical examination. The so-called ‘practitioner needs’ are often formulated in terms of 
general outcomes corresponding to the purpose of project management, rather than in operational 
terms that could govern the development process.  
 
Within the area of social M&S, it has been gradually acknowledged that the modeling of social 
phenomena requires an input of social science and subject matter expertise. However, it is easier to 
acknowledge this than to incorporate social science knowledge into a formal model. Ideally, a good 
model is believed to be one that unites sound social theory and quantitative (mathematical or 
computational) technique.  In reality, it is usually the method that is the cornerstone of a model. In 
some papers published under the computational social science banner, the input from social sciences 
is practically absent – and this is, perhaps, a better case from the perspective of professional ethics 
(although not from the perspective of the quality of a model as a research instrument). In the worst 
case scenario, an illusion of such input can be created through a scant incorporation of social theory 
in an introductory section of a paper, or through including a social scientist into the list of authors. 
Sometimes, an analysis of computational models of social phenomena can reveal a complete 
incompatibility between the formal method and the social theory used to construct the object of 
analysis. For example, a modeling algorithm may draw upon methodology developed for the analysis 
of the system’s change of states. At the same time, the concept of the modeled phenomenon may be 
grounded within a structuralist paradigm in social science. In order to comply with the professional 
code of ethics, social modelers need to endorse the use of social science as a genuine source of a 
formal model. It is an act of professional irresponsibility to simply refer to social science in order to 
make a model look legitimate.  
 
Ideally, there should be a choice of modeling methods and techniques, and this choice should be 
governed by the nature of the object. In reality, however, this rarely happens, due to a number of 
different reasons, amongst them the influence of organizational inertia, funding policies, and 
individual interests. As a result, only those phenomena that can be modeled within the range of the 
available techniques are claimed to deserve exploration, which may result in an incomplete and 
biased analysis negatively affecting NS decision-making. The developers’ vision of the social M&S 
tools is shaped by mathematical and computational approaches. Problems related to intelligence 
analysis and NS decision-making are reformulated as general classes of problems within those 
approaches. There seems to be no place for ethical concerns, due to the developers’ feeling detached 
both from the modeled ‘reality’ and the decisions to be made on the basis of modeling.   
 
The M&S developers may also perceive themselves free from ethical concerns that relate to the 
marketing of their products. In this case, ethical issues may emerge if the developers oversell their 
tools, or if they fail to make the tools’ limitations visible to the practitioner. The problem is that the 

                                                 
59 It is, however, the instrumental aspect of computational social science that is usually highlighted and naturalized 
within a popular discourse on science, such as media coverage of conferences (see, e.g., [73]).   
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developers may sincerely believe that their tools are a good solution, based on their assessments of 
the methodological rigor and the models’ validity. The detachment from the ethical dimension can 
be explained by the belief that developers deal only with the how rather than the what of analysis, thus 
positioning themselves as ‘beyond good and evil’. This positioning is amplified when the assessment 
focuses on the methods and techniques of modeling without incorporating the broader issue relating 
to the use of quantitative methods for an understanding of social and cultural phenomena. It is also 
supported by a trend to approach decision-making as a cognitive process rather than a sociocultural 
activity affected by specific contexts in which it takes place. 
 
In social research, it is important to be open about one’s engagement and partiality. It is a 
methodological requirement to outline the researcher’s background, state the reasons behind one 
becoming engaged in a particular project, and reflect on one’s own piece of research as a kind of 
social practice that aims to invoke a certain social change. Also, an expert reader can understand 
what theoretical biases and ideological motives have shaped a particular piece of social research. This 
can be inferred from the list of references, theoretical chapters, and author details. Similarly, the 
developers of social M&S tools need to be open about the methodological problems related to the 
use of qualitative and quantitative research within the decision-making and policy formation area. 
When quantitative methods are used, it is difficult to capture qualitative changes, to represent the 
entire context of research practice, and to link different levels of analysis. The conceptual linking of 
different levels of analysis is a fundamental theoretical problem within the social science area. Within 
the modeling area, this issue is approached as a problem that requires a technical solution. One of the 
unfortunate implications of this perception may be that a modeler finds collaboration with a social 
scientist unnecessary or undesirable. 
 
Addressing ethical challenges at the development stage requires revealing the politics related to the 
competition between disciplines. In social research, a methodology is closely linked to the object of 
research [74]. Computational and natural sciences are entering the grounds that have been 
traditionally within the realm of social science. Nevertheless, there seems to be almost no doubt 
about the applicability of the introduced epistemological assumptions, including the positivist idea 
that the method of research can be abstracted from the object of research. The lack of willingness to 
comply with the epistemological culture of social research is sometimes stated clearly, as within the 
‘hard science – soft science’ discursive opposition. However, in a tacit, yet more systematic way, the 
competition between disciplines takes place at the institutional level. The mechanisms of scientific 
communication developed in contemporary science (journals, conferences, reviewing, and so on) 
can be used in order to keep qualitative social research outside the magic circle of formal approaches 
and rigorous methods. Journals may reject papers that aim to critically approach the entire project of 
social M&S, under the pretext that those papers are not focusing on ‘technical content’. This kind of 
social practice contributes to the naturalization of the idea that the method is separate from the 
object and the context in which it is going to be used. However, this is not the most productive 
strategy. At present, social M&S is closer to what Thomas Kuhn [75] calls a ‘revolutionary science’. 
This field “is relatively immature, particularly when compared to the use of computers to construct 
models of physical and biological phenomena” [9, p. 1]. It is unethical to use the powerful 
machinery of the institution of science to create an image of social M&S as a ‘normal science’.  
 
The development of social M&S tools should not be distanced from areas of ethics and moral 
responsibility. On the contrary, the ethical aspect becomes more prominent due to the power of 
technology and the new challenges within the NS area. However, even if developers genuinely care 
about social and ethical issues, it may not be possible to link methodological concepts with ones that 
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belong to the realm of philosophy and social and legal sciences (ethics). This makes it particularly 
important to develop an ethics-oriented assessment and evaluation framework. Evaluation is the area in 
which it is possible to merge the engineering and the practitioner perspectives, since it requires 
consideration of the tool in a specific context of use. Specifically, it is necessary to address the ethical 
challenges emerging due to the difference in the interests of the practitioner and the modeler. Figure 2 
shows the place of critical reflection in the provision of high-quality M&S tools.  
 

 
Figure 2 Development of social M&S tools: the role of critical reflection 

 
For the developers, adoption of an ethically responsible position implies that the development of social 
M&S tools is to be shaped by the needs of a particular user rather than by the questions that a given 
modeling approach or a specific social discipline allow to ask. The needs and questions relevant to a 
particular area of practice should be conceptualized as the criteria for the choice of a modeling 
approach, an assessment of the heuristic significance of the representations of the object created in a 
particular piece of social research, and the evaluation of the models. However, the developers should 
not passively follow this practice. Rather, a critical reflexive analysis of the practitioner’s needs should 
be conducted. A critical reflexive stance should also be adopted by the developers of social M&S tools 
in relation to their own activity [15; 16]. The developers of M&S tools need to:  
 

 identify those formal categories into which qualitative social models are translated;  
 make explicit the process of reinterpretation of the qualitative representations of the object into 

formal categories; and  
 provide foundations for their choice of mediating concepts.  

 
 
CONCLUSION  
Social M&S can become an invaluable means for considering the complex problems that intelligence 
analysts and decision-makers encounter within the contemporary environment. However, there is a 
danger that the M&S tools will become just a façade that allows analysts and decision-makers to pretend 
that their decisions are grounded within social science. 
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In order to address the ethical challenges emerging due to the implementation of social M&S tools in 
the NS analysis and decision-making practices, it is necessary to identify the relevant differences 
between the interacting cultures. This task requires that social M&S tools are conceptualized 
appropriately. Currently, the social M&S tools are defined either in relation to other kinds of 
technological tools, or in relation to mathematical and computational approaches. This paper suggests 
that social M&S needs to be conceptualized as a ‘participant’ that mediates social interaction shaped by 
different organizational, professional, and epistemological cultures. This approach helps reveal the 
following key problems:  
 
 Social M&S are able to introduce qualitative social research into the analysis and decision-making 

processes. This might contribute to the deeper understanding of the object of analysis. However, 
theoretical and ideological biases intrinsic to social research may become invisible, due to the 
formalization of social science knowledge during the course of modeling;  

 Social M&S allows the use of quantitative methods for an analysis of social phenomena. On the 
one hand, this enables a more rigorous and comprehensive analysis. On the other hand, there is a 
possibility of offering incomplete and decontextualized representations of the objects of analysis, 
due to the limitations of quantitative methodology in studies of social reality;  

 Social M&S is an advanced technology of knowledge representation. At the same time, it is 
capable of re-interpreting analytical findings and is very demanding of the quality of data to be 
processed. 

 
The development of social M&S tools needs to be grounded within a rigorous scientific approach. 
However, the use of quantitative methods and computational techniques does not guarantee scientific 
rigour. It is necessary to make sure that an adequate social science theory is chosen, that it corresponds 
to the mathematical and computational approaches, that it has been implemented in the conceptual 
model of a phenomenon, and that this conceptual model has not been distorted in the final product. 
Also, the development of social M&S tools needs to be reinforced by a clear understanding of the needs 
and concerns that may emerge in the stages of implementation and use, including those related to 
ethical aspects and sociocultural implications.  
 
In the transformed, science-saturated practice of NS analysis and decision-making, the cultures of social 
research, scientific exploration and engineering (which are not easily compatible with each other) are 
introduced into the intelligence and bureaucratic-political environment. Social M&S tools are becoming 
a locus of intersection of very different values and sources of authority: expert opinion and scientific 
truth versus administrative power and political conjuncture, the formal logic of computational 
algorithms versus the art of intelligence analysis, the universal quantitative methods versus theoretical 
insights based on case-specific qualitative explorations. There is a chance that the models of thinking 
offered together with the social M&S tools will be rejected by the culture of an organization, or, that the 
introduction of the technology will amplify the influence of the bureaucratic and technocratic 
approaches.  
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David Sallach, Social Science Model Validation:  Domain-Specific Challenges* 
 
Presented at the DTRA/Sandia Workshop on Challenges in Computational Social Science. Santa Fe, 

New Mexico. October 25-28, 2010. 
 
 
 The social science domain is complex, high-dimensional and dynamic.  Many issues concern 

the intentionality of social actors at multiple scales while they engage in dynamic interaction.  

Indeed, these social actors may have an interest in avoiding being predictable to other actors.  

Outcomes are interactive in complex ways and, thus, regularly are at least partially unintended.  

Under these demands, the validation of social science models definitely constitutes a significant 

challenge. 

The focus of this discussion is the validation of large, complex social models in historical 

settings.  The exact purpose of such models will vary.  In some cases stakeholders seek a predictive 

model.  More frequently, the objective is a ‘course of action’ model that explores the diversity of 

possible and/or likely consequences.  Whatever the specific goal of the model, validation is a process 

through which various criteria (e.g., accuracy, robustness, coherence, etc.) can be assessed.     

 Validation takes many forms.  In some cases, experimental testing is possible.  In other 

settings, conceptual validation is more useful.  For social models, specialists argue that complexity 

ensures that validation will always be incomplete (Hartley & Starr 2010:312).  The present analysis 

examines issues of validation from a social theoretical perspective, identifying a number of sources 

of validation challenges inherent in the application of agent-based or hybrid models to complex 

social phenomena.  In so doing, it introduces additional criteria for evaluating complex social 

models. 

                                                 
* The author is grateful to Jennifer Perry and Harriet Sallach, who read the manuscript and provided helpful feedback.  I 
also appreciate insights of the participants in the Challenges in Computational Social Science workshop organized by 
Laura McNamara. 
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As a preliminary example, even under the most formal of social relations (e.g., enacted legal 

codes and strong, pervasive norms), rules require definition of the circumstances under which they 

are applicable, and this issue is commonly and repeatedly contentious.  Moreover, rules evolve over 

time, and in response to a diverse mix of social forces, some of which are endogenous to the social 

process in question (Heritage 1984:103-134; Burns & Flam 1987).   

In sum, the identification and representation of stable social rules does not define an 

effective strategy for constructing reliable social models, or achieving a baseline for validating them.  

After reviewing a variety of domain-specific challenges to the validation of social models, we will 

explore the robustness criterion as a promising basis for social model validation. 

 Much has been learned in validating and verifying models in the natural sciences, and this 

knowledge should be applied to the validation60 of social science models whenever it appears to be 

appropriate.  However, to the extent that these techniques appear not to address the unique issues of 

the social domain, the incentive to apply them is reduced.  They could even provide a source of false 

confidence in the applicability and usefulness of the model.  More likely, they will be recognized as 

not fully addressing the validation issues inherent in complex social models, and therefore lack the 

intended effect.  Either way, such insights need to be deepened in domain-specific ways. 

The present paper will introduce and consider a number of ways in which the social sciences 

present unique methodological challenges to effective model validation.  These include:  1) the high 

and fluid dimensionality required to adequately represent social models,  2) the way social factors can 

be mitigated or intensified by the social and/or historical context in which they appear,  3) the 

situated way in which communications and actions are interpreted by social actors (cultural 

indexicality), 4) the fact that social factors take form and have influence within the model itself 

                                                 
60 Although verification and validation are closely linked in the literature, computational social models provide few 
unique issues relative to natural science models, on the one hand, and the best practices of software development on the 
other.  Accordingly, the present discussion restricts itself to validation issues. 
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(endogeneity), rather than simply being manipulated by the researcher through model design and 

configuration,  and 5) the inaccessibility of the motives and intent of social actors.  This list does not 

include the already difficult issues arising from the parallel application of complexity theories 

(Sallach 2000a), which is beyond the scope of the current discussion. 

 

NON-LINEARITIES 

It is safe to say that social processes are not reliably, stably linear.  Linear models can provide 

the basis for some social apparent predictability, but their limitations carry a heavy cost.  Precisely 

when changes, including potentially significant structural changes, are imminent, the efficacy of a 

linear model disappears.  This is one reason why models must ultimately be grounded in domain-

specific social processes, rather than linear computational representations. 

However, to say that social phenomena are susceptible to non-linearities, is not sufficient.  

As the discussion to follow, demonstrates, there are many social sources of nonlinearity.  The focus 

of the present section is to explore various forms of non-linearities, how social manifestations might 

be represented, and how models that address these issues might be validated. 

As an introduction to social non-linearities and their consequences, consider Abbott’s (1988) 

summary of the fundamental assumptions of social non-linearities.  In brief, these include:  1) fixed 

entities with attributes, 2) monotonic causal flows,  3) univocal meanings,  4) the absence of 

sequence effects,  5) casewise independence, and  6) independence of context.  Each of these 

assumptions has important implications and, in interaction, they capture many of the sources on 

social non-linearity.  Accordingly, this one article serves as a useful introduction to the validation 

challenges arising within, and as a result of, the social domain. 

Fixed Entities.  The assumption that social entities remain the same over a given period of 

time (or correlative model run) is a convenient one, but it is often misleading.  The various nations, 
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institutions, firms, movements, insurgencies, etc., that researchers seek to model have diverse 

histories, structures and cultures.  To generalize, without taking such differences into account, is to 

fail to fully engage the domain.  As Abbott points out, even considering only creation, destruction, 

amalgamation and division as the events of interest, each event changes the frame within which 

inferences (logical or statistical) can be made.  Changes in the composition and sampling of social 

actors may also produce a similar limit on generalizability. 

Abbott suggests the subject-event model of history (and narrative) as an alternative 

framework to a highly generalized analytical model.  The central subject (which may be an entity, a 

structure or a process) is shaped by the events it undergoes.  But, the very diversity of possible 

subjects and potential events suggests that such a framework might accentuate modeling and 

validation issues. 

However, the limitation of the ‘fixed entity’ assumption may be addressed in other ways.  

Defining richer models that represent the ways in which social entity types vary, and under what 

circumstances.  Thus, while developing effective domain-specific models that are also theoretically 

grounded may be challenging, the effort will avoid over-simplified assumptions and will, over time, 

result in models and applications that are more susceptible to validation.  

Causal Flows.  The assumption of unchanging causal flows projects causal effects forward in 

time, and/or downward in scale without fluctuation (or other dynamics).  Similarly static 

assumptions include a single time horizon of social actors, and the continual relevance of particular 

causes.  Abbott provides examples in which causal factors operate on diverse time scales and are 

activated by contexts and contingencies.  As Abbott (1988:174) writes:   

The problem with the whole approach is that the values of these measures at any given time are not 
freely variable … [I]ndependent variables don’t really stand for [a] state’s free expression of its intents, 
but rather for what it  can intend given the various events it finds itself within.  One could imagine 
measuring these events with moving averages, but the ‘width’ of the moving averages would have to 
change with the temporal duration of the events involved … [L]inkages of various yearly levels of 
variables into larger ‘events’ undermine studies assuming uniform time-horizons …  
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Univocality.  The assumption of univocal meaning implies that concepts (and variables) have 

the same meaning and comparable effects throughout the study:  in different times, regions, settings 

and cultural climates.  Abbott identifies a number of technical work-arounds but, for present 

purposes, it is sufficient to note that failure to recognize that an unrecognized multiplicity of 

meanings may compromise the validity of a study by failing to capture shifts in the interpretive 

framework used by actors within the model. 

Sequence Effects.  The assumption that the order of events has no influence on outcomes 

further adds to the fragility of general linear models.  The need is for “methods that can classify or 

cluster sequential data, such as the histories of individuals, occupations and revolutions” (Abbott 

1988:178).  Such clustering would provide a means of recognizing, and taking into account, path-

dependent effects.61 

Independence of Cases.  Linear models also assume that historical cases are independent of each 

other.  While the importance of relevant data is widely recognized in the modeling community, there 

are complicated data issues that often remain unaddressed.62  The immediate issue Abbott raises 

concerns correlated factors, variables that may together give rise to ‘emergent attributes’ or 

syndromes.  The inherent complexities of such data clustering (that, in turn, represent substantive 

relationships) carry validation issues. 

A number of additional data issues need to be assessed as well.  Archival data is collected for 

purposes that are not closely tied to the research at hand.  Data categories may be distorted or 

compromised by collection and/or analysis procedures (cf., Garfinkel 1967:188-207).  Observable 

data are often used as a proxy for data that cannot be directly collected, and the assumptions 

underlying such a mapping must be carefully considered in any modeling application. 

                                                 
61 See pages 12-14 below for a more specific discussion of path-dependent effects. 
62 For a thoughtful treatment of the relationship between historical cases and how they may be drawn upon to shape 
situated social theories, see George & Bennett (2005). 
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Variable Independence.  A final assumption of linear models that Abbott identifies is that each 

variable should be independent.  “Its effect does not change as other variables change around it, nor 

is its causal effect redefined by its own past” (Abbott 1988:180).  There are technical means of 

handling various types of factor interdependence, but they have drawbacks of their own.  Since 

policy-oriented and historical processes are defined by rich interactions among social actors (and 

among the variables that serve as their proxies), such complexities must be addressed in assessing 

the models used to represent them. 

Abbott assumptions well as a preliminary checklist for analysts seeking to confront the 

unique requirements of social models.  However, to fully address social validation issues, greater 

depth is required.  There are facets that require further exploration, and issues not yet addressed.  It 

is to these topics that we now turn. 

Contexts and Complexities.  Table 1 provides a brief description of each domain characteristic, 

and the implications they have for the validation of social models.  In the discussion to follow, these 

issues have been categorized as examples of either social complexities or context effects, and are 

explored in greater depth. 

 

SOCIAL COMPLEXITIES 

The complexities of the social domain can be expressed in a variety of ways.  First, consider 

the distinction between factors that interact within a model and those that are external, with their 

causes lying outside of the analytical system. 

Endogeneity.  Whether an attribute is exogenous or endogenous is usually regarded as a 

characteristic of the model rather than the social process that is being represented.  However, the 

structure of a model necessarily reflects assumptions 
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Domain 
Characteristics 

Characteristic Descriptions Validation Implications 

Endogeneity Social actors are changed by intra-model 
processes and by social ecologies.   

Structures and propensities of social actors 
can’t be stipulated once and for all, but are in 
flux. 

Social 
Dimensionalities 

Social phenomena are complex; 
representing them requires spaces with 
high dimensionality. 

With many interactions and potential 
outcomes, the possibility space of complex 
social processes is vast. 

Trans-scale 
Propensities 

Social phenomena occur at many scales 
from the nuclear family to the UN, and 
from a moment to a millennium. 

Social processes at multiple levels interact with 
each other, shaping contexts, creating many 
complex and indirect causal flows. 

Interaction, Paths 
and Strategies 

Social interaction is an endogenous and 
self-referential process.  It creates fine-
grain sequential paths and dependencies. 

Small differences in interactive processes result 
in significantly different paths.  Similar initial 
conditions can produce strikingly divergent 
results. 

Interpretive Agency Social actors are oriented by meanings, 
both individual and shared, shaped 
through interpretive skills. 

Since changed interpretations may result in 
altered courses of action, many social models 
must model meaning attribution. 

Inferring Intent Given mixed motives and deception, there 
is no direct evidence of actor intent.  As in 
life, intent must be inferred. 

Robust actor models involving both reason 
and affect may be necessary in order to explore 
patterns of motive and intent. 

Table 1.  Domain Characteristics and Validation Implications 

about the domain.  A critical issue that the ‘exogeneity versus endogeneity’ choice concerns is the 

complexity of the causal field.  In general, the fewer the endogenous variables, the simpler and less 

interactive the model is, and the less likely that it will adequately represent complex social processes.   

In contrast, capturing even simple forms of endogenous interaction can lead to more subtle 

and compelling models.  As an early economic example, Kurihara (1960) rejected the idea that 

growth cycles were produced by exogenous shocks, substituting a model that better captures the 

dual character of capital by generating self-limiting oscillations around the steady growth path of a 

dynamic equilibrium.  Together, demand-decreasing and capacity-increasing effects are 

counterposed, thereby generating both a positive rate of growth, and limit cycles that accompany 

and envelope it.   It is unlikely that an exogenously driven model could achieve a comparable level of 

elegance and coherence. 

In a more methodological example, Wlezien, Franklin & Twiggs (1997) demonstrate that a 

failure to identify endogenous cross-effects results in an exaggeration of the extent to which 

economic perceptions determine voting choices.  In this case, the point is that voters tend to take a 
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favorable view of the economic policies of candidates they prefer.  The authors accurately describe 

the required analytical process as one of disentangling endogenous effects. 

A similar point has been made regarding ‘political business cycles’, in which researchers had 

suggested that politicians were able to use economic stimulation as a means of improving their 

chances for reelection.  However, when the empirical patterns appeared murky, Heckelman and 

Berument (1998) noted that there had been an operative assumption that the time of election 

occurrence was fixed.  However, since many parliamentary systems allow the sitting government to 

have flexibility regarding when an election will be scheduled, the relationships between economic 

trends and elections were more complex than had been previously thought.  Specifically, the effects 

could flow either way with either political or economic factors having causal priority. 

Two further examples illustrate the potentially broad significance that socially endogenous 

interactions may have.  Sunstein (1991) inverts the prevailing assumptions of much social science 

regarding citizen preferences.  Economics has long treated consumer preferences as exogenously 

defined, and democratic theory views state policies as rightly arising from voter priorities.   

In contrast, Sunstein (1991) argues that government may be obliged to override grass roots 

preferences, both in public policy and in the marketplace, and argues that such preferences should 

be regarded as strictly endogenous.  In view of these diametrically opposed approaches, it would be 

a useful exercise to consider how such polar interpretations might best be validated. 

In a second example, Gintis (2002) argues that, notwithstanding that it has informed decades 

of research, General Equilibrium Theory is flawed because its price mechanism is thoroughly 

exogenous and, therefore, unrepresentative of market interactions.  Gintis introduces models 

designed to demonstrate the form that endogenous contract enforcement might take in labor, credit 

and consumer goods markets.  To the extent that this argument is persuasive, it will result in a 

significant transformation of economic theory. 
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Each of the endogeneity examples is domain-specific.  They illustrate the interaction of 

endogenous attributes as an inescapable aspect of social processes.  In part, this is because, to 

capture their complexity, historical and policy-oriented issues must be represented in high-

dimensional spaces.  We now turn to such dimensional issues. 

Social Dimensionalities.  Consider historical questions of interest.  What are the preconditions 

for revolution, and what can prior examples contribute to their understanding.  What causes 

economic growth, and how can that potential be identified?  Why do adjacent cultures converge, or 

resist convergence?  In each case, there may be more specific issues that are dependent on these 

broader outcomes. 

In the case of such questions, it may be beneficial to ask:  what is the dimensional space in 

which the issue may be defined?  Because of the breadth of questions, it takes little reflection to see 

that a dimensional space that could represent comparative cases is likely to be quite large.   Indeed, 

the adequacy of the dimensional space may be considered a basic validation issue. 

To start, there are multiple social science disciplines for a reason.  In addition to the 

administrative efficiency they provide university administrations, they also constitute an implicit 

division of intellectual labor.  Psychology, economics, political science, sociology and anthropology, 

each have the potential to contribute insight into a broad historical process.  More specifically, each 

has concepts to which they commonly attend.  Identity, market, state, social structure and culture are 

prototypical concepts from each of the listed disciplines, and it can also be recognized how these 

concepts might be relevant to revolution, economic growth, cultural convergence and a range of 

other policy-oriented topics. 

However, these concepts are only prototypical and each discipline contains hundreds of 

competing or supplementary concepts that may need to be considered for a particular problem.  Not 
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only does this significantly expand the prospective dimensional space for an historical issue, it also 

forces the analyst to face the inchoate nature of many social science concepts.   

Quantitative social science recognizes the desirability of identifying orthogonal concepts, of 

course, but because most social science concepts exist in an (endogenous) semantic space, they are 

rarely that well-behaved.  Efforts to impose dimensions using factor analysis or other data reduction 

techniques have not eliminated the problem.  Accepting oblique dimensions acknowledges the 

problem, but the resulting “dimensions” are even less well behaved. 

Different researchers understand the concepts in different ways, they evolve over time, and 

there are regional and/or disciplinary variations.  These problems encourage modelers to accept or 

impose an arbitrary definition.  While this is an understandable reaction, it does not directly confront 

underlying validation issues. 

Trans-scale Propensities.  Disciplinary distinctions have arisen, in part, from the need for 

cognitive economy.  While this division of labor was probably inescapable when analysis and 

research was time intensive and personal, computational social science (CSS) provides a means for 

potentially reintegrating the social sciences.  This enables the analyst to trace propensities across 

multiple scales on a scenario or case basis (cf., George & Bennett 2005:224-230). 

Since any focal level may be influenced by lower or higher level social processes, CSS 

provides a strategy for representing cross-scale influences and, thereby, producing more integral 

social models.  It has been argued that the most compelling processes to model will be those that 

operate at all levels, from the smallest to the largest, and the briefest to the enduring (Sallach 2010). 

 

CONTEXT EFFECTS 

In both the analytical and modeling communities, it is recognized that many social decisions 

are heavily influenced by the immersive context.  While this characteristic is broadly applicable 
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within the social domain, it makes the validation process less deterministic and, therefore, much 

more difficult.   

Here too, however, the general description (context effect) is too inclusive to be very useful.  

To better understand the implications for validation, it is important to grasp in greater depth the 

sources of social context effects. 

Interaction, Paths and Strategies.  One reason that context effects are inescapable in the social 

domain has to do with the role of interaction.  From conversation to grand strategy, specific actor 

choices are dependent on the immediately prior communications, actions and/or events.  Game 

theory captures interaction effects well, which is why it has become more prevalent, and even 

regarded as a possible basis on which to unify the social sciences (cf., Gintis 2009).  Game theory 

itself is changing, being extended beyond previous limits (Scharpf 1997; Sallach 2000b; 2006; Vane 

& Lehner 2002), allowing interactive modeling to be applied to broader and more comprehensive 

issues. 

One of the fundamental points about the significance of interaction is that it extends from 

the smallest to the largest social processes.  During the twentieth century, sociologists made 

significant progress in documenting fine-grain interaction.  Seminal contributions were made by 

Cooley (1907), Mead (1913), Schutz (1967; 1971), Goffman (1983), Garfinkel (1967; 2006), Heise 

(2006; Smith-Lovin 1988), Scheff (1990) and Rawls (1987; 1989).   

As the foundational role of microinteraction has become more widely recognized, the 

hypothesis that interaction permeates institutions, up through the largest (Collins 1981; 2008; 

Kemper & Collins 1990; Stinchcombe 2001) is granted growing credibility.  As Hilbert (1990:795) 

writes, “Interaction is scale-free, and occurs at all levels”.  One of the more coherent formulations of 

this theoretical framework is provided by Rawls (1989:166): 

Some aspects of both language and action have a sequential organization that is not derived 
from institutional constraints but is instead sensitive to needs of discourse which cut across 
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social and institutional lines.  However, every action and conversation takes place within an 
institutional context of some sort, and this context can always be brought to bear at the level of 
accounts. 
 

This type of accounting or, as Bakhtin calls it, ‘answerability’ (cf., Kenny 2007), helps define the 

sequential structuring that weaves together trans-scale interactions.   

 However, while sequences of interaction are reasonably regarded as foundational, 

comparable processes arise in economic and state institutions.  In recent years, economists have 

noted the way that small distinctions can grow into large-scale patterns.  Described as ‘path 

dependence’, it explains how the QWERTY keyboard became established, and how computer 

standards and videotape formats become ‘locked in’ (David 1985; 1990), ultimately generating 

insight into the modern ‘productivity paradox’.   

 Interaction creates strategic paradoxes as well.  Luttwak (1987) points out that strategic 

choices are inherently paradoxical.  The strongest most effective options are also the most obvious 

and, thus, are likely to be the best defended.  Paradoxically, options that are suboptimal, and thus 

unexpected, may be the most effective. 

Because it is open-ended, interaction is one source of social unpredictability.  This open-

endedness is mediated by interpretation.  It is to this process that we now turn. 

Interpretative Agency.  In communication and action, human actors are oriented by meaning.  

Accordingly, in every situation, social actors consider, discern, define, attribute, convey, question, 

dispute, affirm, reconsider and evolve a meaning in a particular instance.  Inevitably, the attribution of 

meaning is an indexical process:  the same participants may view shared situations as having 

distinctive, or even conflicting, meanings.  The process of meaning attribution is dynamic, often 

shifting rapidly, as the interpretation of the actor shapes and informs the subsequent flow of 

communications and acts.  In all of these ways, the interpretive process contributes to context 

effects. 
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The modeling of orientation and meaning is not a new problem.  Many significant strategies 

in artificial intelligence (AI), including semantic nets, logic-based semantics, rule-based inference, 

neural networks and subsumption, among others, have sought to address this capability.  However, 

most AI implementations have limited sociality. 

Models that advance the social sciences will, for many applications, need to generate the 

production, invocation, challenging and negotiation of meaning.  More specifically, to capture the 

textured and situated nature of human action, we will need for models based on generic ontologies 

or prototypes to generate indexical methods and responses.   

As Agre (1996:12) writes, “Perception and action … are inherently indexical in character.”  

Indexical representations are tied, in epistemological and causal terms, to the agent’s immediate 

circumstances, and are, thus, strongly endogenous to both model and actor.   

Thus, while there are many exogenous CSS models that stipulate meaning, interpretive 

architectures are currently rare.  As CSS moves forward, designs based on exogenous rules will 

increasingly be required to document that these rules provide determinate regularities, and have been 

validated as such.  That is, if model outcomes are to be fully determined by external assumptions, 

model designers must expect to document that the possible social outcomes thereby generated are 

all that can be expected to arise in the corresponding domain.   

Arguably, when pushed to the limits of modeling assumptions, action is controlled by 

meaning, exogenous factors or some kind of balance.  The substantive significance of this choice is 

one topic that will need to be explored in the decade to come. 

Inferring Intent.  Whether individual or collective, human intent cannot be directly observed.  

Whether as researchers or as undistinguished participants in inchoate social life, we must infer the 

intent of our interlocutors from self-reports, past histories, social locations and more.  But collective 

intentions remain the ground from which events unfold. 
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We attempt to distinguish earnestness from skilled deception, and settled intent from habit 

and drift.  We recognize that declarative statements may not only be deliberately distorted, but may 

also be produced by one who lacks knowledge of future circumstances, or even of their own 

priorities.  Our conclusions are often flawed or inaccurate.  It is possible that intentions have a self-

organizing fluidity and coherence that resist analytical representation (cf., Juarrero 1999; Roth 2000). 

The problem of requiring data that cannot be directly observed is not unique to the social 

sciences (cf., Bell 2004), but it is pervasive.  Inaccessibility of intent can be regarded as an ultimate 

source of social unpredictability.  It ensures that social models lack an exogenous location from 

which to make validation assessments and, thus, must rely more heavily on inference based on 

behavioral mappings.   

 

VALIDATING SOCIAL MODELS 

The preceding overview has endeavored to provide a concise summary of some of the 

characteristics of the social domain that make model validation challenging, particularly from the 

standpoint of conventional validation strategies.  However, if the case that validating social models is 

difficult has been adequately made, it may yet be unclear as to how the validation of social models 

can be accomplished.  While this issue is inherently complex, and worthy of extensive discourse, it is 

possible to proffer a few precepts that may move such a discourse forward (Table 2). 

The topics considered above, loosely characterized as:  1) non-linearity (malleable actors, 

causal fluidity, multivocality, sequence effects and correlated cases/contexts),  2) complexities 

(endogeneity, dimensional ambiguities, trans-scale propensities), and  3) context effects (interaction 

effects, endogenous interpretation, hidden intent) are recurrent and pervasive in social conjunctures 

of all types.  Although not insurmountable, they cannot be ignored.  The precepts are designed to 

address how social validation challenges can best be addressed. 
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The precepts presented in Table 2 are not intended as a full and definitive strategy for social 

model validation.  On the contrary, they are a contribution to an emerging discourse on how to 

model social processes, and how best to validate those models.  It is hoped that they will serve as a 

starting point for addressing social validation issues in greater depth and with greater sophistication. 

 

 

Precept 
Number 

Precept Name Precept Description 

1 Absence of 
determinacy 

Social models cannot provide discrete, repeatable 
outcomes.  Model results will always be expressed in 
probable paths and outcomes. 

2 Interaction as 
foundational 

Social phenomena are self-referential and evolve through 
interaction, which creates, inter alia, path dependencies 
and sequence effects. 

3 Robust validation The most effective validation strategy for social models is 
robust validation. 

4 Challenge 
acknowledgement 

The process of validating social models should address 
how non-linearities, social complexities and context 
effects are to be addressed, or why those categories of 
effects are not relevant to the model. 

5 Substantive design To the extent that social complexities can be addressed by 
theory integration and/or substantive social design, the 
validity of the resulting model will be enhanced thereby. 

Table 2.  Precepts of Social Validation 
 
 

The contributions of Lempert, Popper and Bankes (2003) have made a unique contribution 

to the validation of policy-oriented models.  Robust validation addresses both the reachability and 

stability of defined outcome spaces, and these are vital criteria in assessing social models. 

However, current robust validation techniques were designed primarily with system dynamic 

models in mind.  They need to be customized and extended in order to be applicable to social agent 

models and hybrid models that incorporate social agency.  As robust validation techniques grow in 

maturity, social models validation issues will be able to be addressed more effectively. 
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CONCLUSION 

 The sources of social unpredictability discussed in this paper are neither an elegant synthesis 

nor exhaustive.  Rather, it is an illustrative tour of the many sources of complexity and 

unpredictability.  These sources are interleaved and coevolving.  In some settings, they reinforce 

each other; in others, they compensate for each other.  In either case, an effective validation strategy 

for social models must acknowledge them.  

The validation of social models is challenging, but not impossible.  Effective strategies are as 

yet embryonic, and their further evolution is an essential aspect of the effective use of social models.  

However, there cannot be hope for effective social validation until the unique issues associated with 

social science validation are recognized, conceptualized and addressed.   

Such recognition is the prerequisite for a shared validation discourse that can:  1) identify 

fundamental challenges,  2) define and constrain the foci of social validation, and 3) suggest 

strategies that can resolve or mitigate emerging difficulties.  Such advances are required in order to 

achieve practical benefits from ever more effective social models.  It is hoped and intended that, by 

framing these issues in greater depth, this discussion contributes to progress in the effective use of 

social models. 
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Abstract 
The goal of much software research is to incorporate the research into a larger software package for 
a set of end-users.  In many cases, users are not engaged or consulted in the process or if they are it 
is not until the development phase.  This paper presents an argument for involving users much 
sooner in the research and development process.  In early user involvement we are investigating the 
utility of the software.  While software usability is certainly necessary for end-users to be able to 
work effectively, it is not sufficient for end-user adoption.  In order to convince end-users to adopt 
new software it is necessary that they perceive some benefit.  Understanding metrics that are 
important to end–users and measuring the impact that software use can have on those metrics is one 
way to achieve this.  While it is advisable to follow this process for software research being 
incorporated into applications that end-users will consume, it is essential to follow this process when 
the software is being used for high impact decision-making.  Human social, cultural and behavioral 
modeling and simulation is an area that will certainly benefit from a user-centered approach.  Indeed, 
the feasibility of incorporating these models into decision-making without having considered user 
tasks and concerns in the R&D process seems highly unlikely.  Recommendations for a user-
centered approach to human social, cultural and behavioral modeling are discussed.  These 
recommendations are from existing literature and author’s experience with different research 
projects, including an effort in techno-social predictive analytics [1].   
 
1    Introduction:  Usability versus Utility 
 
A user-centered design approach takes into account both usability and utility concerns.  The 
International Organization for Standardization (ISO) defines usability as “The extent to which a 
product can be used by specified users to achieve specified goals with effectiveness, efficiency and 
satisfaction in a specified context of use [2].”  Utility is a broader assessment in that it concerns the 
overall process and work flow of the targeted end-users and stakeholders and how the new product 
will fit into that process.  Utility metrics, however, are not generic but are customized for the 
targeted users.  Utility evaluations necessitate working with various end-users and stakeholders to 
identify metrics that reflect utility [3].  These measures are unique to the values of the organization 
and to the various stakeholders and end-users.  Potential metrics might be a better quality product, a 
safer or more efficient process, or more confidence in the analysis.  These metrics need to be agreed 
upon by researchers, end-users and evaluators, and used for utility assessments throughout the R&D 
cycle.  If utility evaluations during the cycle do not show marked improvements, then researchers 
need to be able to assess the problems and take the research in a direction that will produce the 
needed improvements.  While usability evaluations ensure that end-users can effectively use 
software, utility evaluations ensure that there is a measurable benefit in doing so.  An advantage of 
utility evaluations is that end-users can easily understand the benefits of adopting the new tools.  If 
those benefits are such that they outweigh the disruption and cost of change, then the new 
technology should be more readily adopted.   
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Although we tend to use the term “utility evaluations”, it should be clarified that we use both 
formative and summative evaluations and that in the process of identifying the metrics for utility, we 
are essentially establishing high level user requirements that need to be considered in providing the 
new technological capabilities.  Usability concerns need to be addressed when the architecture for 
the system is being developed.  Decisions about which software modules talk to which other 
modules, what tasks are being automated, what provisions for backtracking are included all have 
implications for usability of the software [4].     
 
Utility decisions are important to consider in earlier stages.  When users are being provided software 
tools that provide new capabilities, we need to understand the impact of the technology on their 
current processes and products.   
 
2   The User-Centered Approach to Technology Research 
 
Mayhew [5] outlines three phases of a usability engineering lifecycle:  requirements analysis, 
design/testing/development, and installation.  The requirements phase involves doing a user task 
analysis, developing user profiles, understanding basic platform capabilities and constraints, and 
producing a set of usability goals.  These usability goals are commonly expressed in terms of times 
for users to achieve a task, number of errors in a benchmark task, user satisfaction ratings for ease of 
use.  In this lifecycle, the purpose of the user task analysis and the user profiles is to understand how 
the user will interact with a specific product that has already been defined.  In taking a user-centered 
approach to research in software capabilities, we are more interested in understanding what 
functionality particular users need and the impact this could have on their work.   
 
Chen and Atlee [6] note that requirements engineering is about defining precisely the problem that 
the software is to solve.  They note 5 steps in requirements engineering:  elicitation, modeling, 
requirements analysis, validation and verification, and requirements management.  The elicitation 
step can range from looking at modifications to an existing software application to determining a 
new product based on new software research.   
 
These software engineering processes were developed for the process of producing specific 
applications from existing technology.  In applying the user-centered approach to research-based 
software, we have a slightly different approach for requirements engineering.  We actually have two 
communities, the researchers and the potential end users, to bring together to determine if the 
research can be useful to the potential end users.  To do this, we need to understand the end-users 
current work, their current problems, their value system, and any constraints that the work 
environment, processes, customer interaction, etc. imposes on them. It is important to understand 
that this is a holistic approach.  In order to understand the impacts of the specific research, we need 
to understand, not only the particular aspect of the users’ problem that could potentially be 
eliminated, we need to understand the entire flow of work to make sure that no indirect affects 
occur.  We also need to understand the technology research and the potential benefits that can be 
realized.   
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Figure 1.  The first step in user involvement in the research process 
 
 
We agree with both Mayhew’s approach to usability engineering and the requirements tasks in 
requirements engineering.  Our focus, however, is on bringing users into the research process.  This 
involves a slightly different process as the technology may go well beyond what end-users currently 
have.  Figure 1 shows the steps in our approach.  This is a compromise between the push and pull 
of technology.  Our goal is to determine if and how the technology being developed in a particular 
research project will provide utility to a specific group of end users.  The first task is identifying 
potential end users.  These might already be identified in a government funded research project or in 
an industry effort.  If this is not the case, then we will have to brainstorm with the research 
community and identify contacts in different user groups.  If this is the case, then an initial but less 
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intensive round of elicitation with several groups should be done to find the best possibility.  For 
more intensive elicitation once a promising end-user population has been identified, techniques such 
as task analysis, cognitive task analysis [7], ethnographic techniques, and other interview techniques 
and observations [8] should be employed. 
 
 
    Work with researchers to 

identify measures to instantiate 
end-user metrics 

Conduct an evaluation at an 
appropriate decision point 

Is the impact significant?

Researchers need to relook at this 
aspect of the research 

no

yes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The second step in user involvement in the research process  
 
An important addition to the normal techniques is to determine the utility metrics that are important 
to the end user population.  Normally these metrics are such things as time, quality, or production 
capability.  For example, in an interview with a number of Port Police who are on duty at a major 
airport, two metrics were identified:  time to respond to an incident and time spent on the airport 
floor.  Time to respond could be improved by functionality that helped officers know when other 
officers were involved in investigation work and help the others move to strategic locations to lessen 
response time for other incidents.  The police staff felt that their visibility in the airport deterred 
crime.  So any time that they had to leave the airport proper and go to their offices for forms, filing 
reports, and such took away from this visibility.  Providing functionality that allowed the officers to 
conduct some of their paperwork remotely would lessen the time they needed to spend off the 
airport floor.  During the elicitation process it is necessary to determine what is important to the 
user community and use those metrics to measure the impact of the new technology.   
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The next step is to work with the researchers to determine if their technology can positively impact 
any of these measures.  If this is not feasible, then we need to start looking for another possible 
home for the technology.  But if it is, then we need to work further with the research community to 
determine what the impact is and how we can measure it.   
 
The goal is to come out of the research phase with an identified end-user population, a set of utility 
metrics that have been identified for the end user and technology that has been shown to be useful 
to this end user population through the research phase.  Figure 2 shows how the research phase uses 
these metrics to focus aspects of the research.  The evaluations are conducted with either members 
of the end user community or surrogates for these end-users.  The surrogates are selected to match 
specific skills of the end users where the skills depend on the particular evaluation being conducted.   
 
The evaluations should be done to provide researchers with an answer to a specific question in the 
research and should be done as soon as possible.  User evaluations do not necessitate finished or 
even working software.  Paper prototyping [9] and Wizard of OZ [10] methods can provide answers 
to many questions.  However, determining methods for these different types of evaluations is an 
exercise in creativity.   
 
It is helpful to determine a benchmark once the end user community has been identified.  For 
example, it the end users are intelligence analysts, it might be helpful to give a group of analysts a 
specific task and a collection of documents.  Recording the documents they used, the time it took 
them in various phases of analysis, any particular analytic techniques they used, the processes used, 
the products produced and the ranking of those products based on quality criteria would all be 
useful in comparing the impact of any technologies designed to help intelligence analysts in their 
work [3,11,12].  The task, of course, needs to embody the problem that the technology is helping to 
overcome. 
 
3 Applying this to Human Social, Cultural and Behavior Modeling and Simulation Research 

 
McNamara and Trucano [13] have laid out ten challenges that need to be addressed in order to 
develop decision support technologies and tools in computational social science modeling and 
simulation for national security decision making.  The challenges for human-computer interaction 
are: 
 

 how to transform specialized modeling and simulation prototype technologies into tools 
for non-expert users; 

 how to evaluate how these tools influence the user community’s performance in 
exploratory problem solving and sensemaking; and  

 how to create adoptable computational modeling and simulation technologies 
 
These challenges are not independent; rather the modeling and simulation technologies will be 
adopted if they are created so that non-expert users can use them and if evaluations show that 
analysts and decision makers can make “better” decisions using the tools than without the tools.  In 
the following sections we discuss how we can use information from our user-centered approach to 
technology research to provide insights to address these challenges.   
 
3.1    End-User Metrics 
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If we assume that we have identified the intelligence community as a group of potential end-users, 
we have 2 subgroups to satisfy:  the analysts who will be working with the models to determine 
different possibilities and who will need to communicate their recommendations and the decision-
makers who will be using the recommendations in conjunction with other information to make 
policies.  Some studies have already been done that shed some light on how analysts work with 
technosocial modeling [14,15,16].    
 
Pfautz et al. [14] analyzed the application of modeling techniques and technologies based on 
Cognitive Systems Engineering.  Cognitive Systems Engineering analyses users engaged in work and 
uses an iterative design, implementation and evaluation cycle.  In particular they analyzed user 
requirements in the process of developing a number of applications based on the user of models and 
found that analysts are very concerned with the validity of the models.  In some instances analysts 
felt it was necessary for the models to be created within their community in order to be trusted. The 
bottom line is that if analysts do not trust a model, they will not use it.  The recommendations 
analysts make will be based in part on the information from the model.  And, as with any other 
source used, a model must be reliable and trusted.  Therefore, Pfautz et al. are focused on building 
tools to help analysts create their own models, including building templates of models that end-users 
can customize.    
 
Hanson and Russell [15] note that metrics for technosocial predictive analytics must satisfy two 
audiences:  those testing the model’s theoretical basis and the operational user who has to have a 
reason to trust the model.  They suggest that validation is easier to accomplish, and therefore easier 
for the user to trust the model, if the model is approached as a black box.  That is, if the inputs and 
outputs from the black box correspond to input and outputs in the real world, it is not necessary 
that users understand that specific function implemented in the model.   
 
Klein et al. [16] found that decision- makers need not only situation awareness, the facts about the 
environment or event that is occurring, but also need to understand the options available to them 
and the consequences of selecting each action.  Decision-making has several constraints:  the time in 
which the decision has to be made and the fidelity of the information that is needed to make the 
decision.  Klein et al. conducted a study to look at the essential precision and fidelity of models 
needed to support decision spaces.  They found an example where a lower fidelity model 
significantly changed the decision space.  They conclude that more work needs to be done in 
looking a boundary conditions and determining where models are unable to provide decision-quality 
data.   
 
These studies have identified potential end-user metrics.  For analysts, trust in the model is critical.  
For decision-makers, we need to consider the time frame in which the decision is needed and ensure 
that analysts working with the software can produce the recommendation within that time frame.  
We need to have a measure of the fidelity of the information needed for making the decision and 
ensure that analysts can deliver the options available with the necessary fidelity.  Interviews with 
specific groups of end users will produce additional metrics and more specific values for trust, time 
constraints and information fidelity.   
 
3.2  How to Make Modeling Tools Available to Non-Expert Users 
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In the above discussion, we identified trust as a measure of importance for the analysts.  The 
question then is not just how to make modeling tools available to non-expert users but how to make 
these tools available and ensure that analysts trust the information from the modeling tools?     
 
Mostashari [17] advocates a collaborative modeling approach with stakeholders.  He notes that a 
modeling process that is being used to support decision–making should produce more than a system 
that meets technical requirements.  Dürrenberger et al. [18] notes that good models for science-
intensive decision-making should: 
 

 have a high degree of visualization and interaction 
 have simple, transparent structures and produce results quickly 
 should include links to local tangible issues 
 should not be regarded as the sole source of information 
 

Mostashari notes that technical engineering models can improve communications in planning large-
scale engineering systems.  In fact, a systems model should facilitate communications among 
representatives from different domains and perspectives.  To facilitate this Mostashari and Sussman 
developed a stakeholder-Assisted Modeling and Policy Design Process [19].  The take-away from 
this effort is that the use of modeling and simulations would be advanced by having stakeholders 
participate in the design of the actual system.   
 
While participatory design is a technique often used in the human-computer interaction field, the 
issue is finding analysts and decision-makers who have the time needed to participate in these 
activities.  Other possibilities include using historical data along with the modeling and simulation 
tools and comparing the decisions to those of the historical decision.  This is problematic as the 
existing data may not be sufficient for the models and the participants in such a study should not be 
aware of the situation and its outcome.  If a different decision is made than the historical decision, 
we are also faced with trying to determine if this outcome would have been “better.” 
 
Another possibility is to engage representatives from the end-user community in user-centered 
evaluations during the creation of modeling tools.  This technique was the approach taken in the 
Technosocial Predictive Analytics Initiative [http://predictiveanalytics.pnl.gov/about.stm] at the 
Pacific Northwest National Laboratory.  The concept was to produce a simplified visual 
representation of the model showing the various parameters that served as inputs and outputs and a 
simplified representation of other parameters used within the model.  The methodology proposed 
was to use this visual representation and have the analysts study it and explain to us what the model 
did.  Then we would ask the analyst to walk through a scenario and “use” the model to obtain 
information pertinent to the scenario.  This information would be compared to the information 
gathered in the experiment conducted with domain experts.  The differences would be analyzed to 
determine where differences occurred and that would be used to adjust the fidelity of the 
representation if necessary.  Table 1 shows the questions to be addressed using this technique. 
 
 
 
 
 
 
 

 233 



 

 
 
 
 
Evaluation component Model  
Question to be 
addressed 

Is the model understandable? 
Are the inputs correct? 
Are the outputs correct? 
Are the users able to understand the impacts of parameters 
changes on other parts of the models? 
What additional scenarios could be explored? 

Target users Domain experts; senior analysts 
Materials  Paper based schematics/ descriptions of models 
Method for collecting 
data 

Open ended interviews 
Think aloud exploration of a scenario 

Table 1.  A methodology for a user evaluation of a technosocial model 
 
This could be used in determining what information end-users need to be able to understand and 
trust the information that a model provides.  If a representation alone does not provide engender 
trust in the model, then the next step would be to determine if the addition of some actual 
computations for several different scenarios would suffice.   
 
3.2.1  Making the Information Available to Decision-makers 
 
The next step is to understand how decision-makers utilize information provided to them from 
computational social models.  Questions we need to answer are what information do decision-
makers want?  At what fidelity is this information needed?  How can information from models be 
presented and how much reliance on this information will decision-makers feel comfortable making?   
 
There have been numerous studies on how people make decisions.  A number of these have taken 
place in the operational world.  Naturalistic Decision Making [20] studies show that people rarely 
compare options when making a decision.  Rather they use their experience to size up the situation, 
classify it and identify a typical response to that particular type of situation.  Rather than attempting 
to find the optimal solution, they are content to find a satisficing solution.  This may also be 
attributed to the strict time constraints found in operational environments.   For operational 
situations, it has been suggested that the best aid would be to provide tools that would provide with 
a better understanding of the situation.  Once the situation is understand, the appropriate course of 
action is usually obvious.   
 
In operational decision-making, mental simulation is used for evaluating a course of action.  This is a 
means of doing a deep search on a few options, in the context of the situation, but not as a means 
for comparing multiple possibilities.   In comparing multiple options all strategies used basically 
employed breaking the course of action into component and comparing these [21].   
 
Etzioni [22] presents three approaches to social decision making.  Rationalistic models assume that 
the decision-maker becomes aware of the problem, determines a goal, carefully weights the 
approaches to achieve this and selects one based on estimates of the pluses and minuses of each.  A 
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problem with the rationalistic approach is an inability to collect and utilize all of the information in a 
timely fashion.  Additionally, weighing the merits of each approach implies that the decision-maker 
has a set of values against which these can be evaluated.  The incrementalist approach is the other 
extreme.  The decision–maker focuses only on those alternatives which differ incrementally from 
existing policies.  For the alternatives to be considered, only a few important consequences are 
evaluated.  There is no right decision, but a number of decisions that are made incrementally.  
Radical change does not come about using the incremental approach.  
 
Etzoni proposes a third approach to decision-making, a mixed-scanning approach.  In this strategy a 
detailed examination of some aspects of the situation are made, with a scanning done of the other 
aspects to pick up any unexpected behaviors.  Part of the strategy is to decide which aspects deserve 
a more detailed look and which are suitable to scan.  This allocation can, of course, change over time 
if the environment is radically changing.  If we determine that decision-makers are indeed 
comfortable a particular approach, this will impact what the model and the fidelity of the 
information needed.   
 
Another question is how to provide information from models to decision-makers.  The field of 
visual analytics is based on the premise that interactive visualizations [23] help information analysts 
better understand large amount of information; thus increasing their situation understanding.  While 
researchers in the field are still exploring metrics to show the utility of visual analytic tools [23], the 
analysts beginning to use these systems present their analysis to decision-makers in text.  A challenge 
for researchers is to provide analysts systems that help them present their analysis visually [25].  This 
still leaves us with the problem of determining what type of presentation is better? 
 
It has been suggested that if a “better” decision is made than the presentation of information may 
have been more effective.  But what is a “better” decision?  In the situation awareness literature [26] 
having better situation awareness does not necessarily mean that a better decision is made or that the 
end result is better.  A decision-maker can have perfect situation awareness and make the wrong 
decision for various reasons.  And by pure luck a decision –maker with imperfect situation 
awareness, could select a very reasonable course of action.   
 
Our proposal is to again use the metrics important to the decision-maker to evaluate the 
effectiveness of the decision.  Although, we speculate that in many cases, these metrics may be 
specific to a certain domain at a certain time.  For example, the goals of a CEO in difficult economic 
times may be radically different those goals in times of prosperity.   
 
As many of today’s complex problems require expertise from many different domains, a further 
question is whether models substitute for domain expertise?  Again, this can be measured in terms 
of trust.   
 
An interdisciplinary teams of researchers is need to devise user studies to help understand the issues 
that face analysts and decision-makers using computational social models.    
 
 
3.3 How to Evaluate How these Tools Influence the User Community’s Performance in 
Exploratory Problem Solving and Sense-making? 
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Pirolli and Card [27] studied the sense-making loop of intelligence analysts and proposed a leverage 
points where technology could have a decided impact. They identified these leverage points within 
the two major loops in the intelligence analyst’s process:  foraging and sense-making.  In foraging, 
analysts are trying to identify the relevant material from a large mass of existing documents.  There is 
a cost associated with exploring more material to make sure more relevant material is there to 
possibly exploit.  Scanning for information, shifting attention to other domains for information, 
doing follow-up searches consume resources.  More information also means more time needed to 
analyze and exploit that information.  
 
The sense-making look is affected by many issues noted by Heuer [28]:  generating alternative 
hypotheses, confirmation bias, and the span of human attention to evidence and alternative 
hypotheses.   
 
To evaluate how modeling tools can impact the end-user’s problem solving and sense-making 
processes it is feasible to use both quantitative and qualitative measures.  Examples from several 
researcher projects [3,11,12,29] looked at measures such as time spent in different phases, number of 
documents examined, quality of the report generated (as ranked by participants), hypotheses 
generated, and participants confidence in their recommendations.   
 
 
3.4  How to Create Adoptable Computational Modeling and Simulation Technologies? 
 
As we stated in earlier, analysts will only use tools that they trust.  So the first step is to understand 
what will provide the necessary information for analysts to trust a given model.  Does the model 
need to have a proven track record?  Can it be a black box model whose inputs and outputs are in 
line with historical events in the real world?  Do analysts want to understand the parameters and 
relationships used in the model? Does the model provide analysts with information that the 
decision-makers will use?   
 
Finding methodologies to do user-centered evaluations and using these to instantiate the metrics 
obtained from the end-users will go a long ways to convincing the user community that they will 
benefit from adopting these technologies [30].   
 
4   Conclusions 
 
Today’s analysts and decision makers are extremely busy.  They are inundated with people who have 
great technologies to help them.  To get their attention it is necessary to convince them of the utility 
of tools.  One way to do this is for them to see others successfully using the tools [31].  But this 
takes a long period of time especially for organizations not known as early adopters.  Another 
approach is to provide them with measures of utility in terms they understand:  their own metrics 
for success in their jobs.  Determining those and then instantiating them from measures of the 
technologies can show the impact that the technology will have in a real world environment.   
 
There are challenges to doing this.  Technology researchers need access to the end-users to 
determine those metrics.  Creating the necessary user-centered evaluations is not anywhere as 
straight forward as doing a usability test.  The researchers need sample user tasks and sample data.  
They need independent evaluators to conduct the evaluations.  Not only do the evaluations need to 
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produce measures but it is necessary to produce insights into why the numbers turned out as they 
did in order for the researchers to refine their work.   
 
A community effort is needed to make this work feasible.  We need both research efforts and 
practical efforts.  Interdisciplinary research is needed to understand the issues facing analysts and 
decision-makers using computational social models.  As many researchers are already building such 
modeling and simulation capabilities, user-centered evaluation techniques can be used to help refine 
these tools.  The initial evaluations will be difficult but sharing the lessons learned with the 
community will ensure future improvements in the evaluation process and the technology research 
and will lead to a facilitated transition to the end –users.    
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Introduction 
Computational representations of social phenomena (computational social models) have become 
increasingly visible in a variety of planning and analysis environments, including corporate, 
environmental and military/national security arenas.  The increased visibility and the increasing 
sophistication of the models themselves have raised a variety of methodological questions. 
 
Computational models of physical and biological phenomena have been around for almost as long 
as computing.  Historically, the assessment of goodness of computational models has been phrased 
as a validation question, more specifically as a question of predictive validation.  This arises from a 
fairly constrained notion of what these types of models are designed to do – i.e. to predict.  As we 
shall see later in this discussion, models (of which computational models are just a subset, and 
computational social models an even smaller subset) can serve a variety of purposes.  I shall argue 
that the inherent nature of computational social models poorly suits them for prediction.  If we 
adjust our notion of the purpose of these types of models, we will find a corresponding adjustment 
in the mechanisms by which we assess how well they serve that purpose.  While predictive validation 
may still have a role, it will be a greatly diminished role in favor of other types of assessment, 
including other types of validation. 
 
Definitions 
Any discussion of validation must begin by clearly distinguishing validation from verification.  The 
two processes are often presented in tandem or even treated as an integrated process, as in a ‘V&V 
[verification and validation] capability.’  However, they require significantly different skills and fill 
very different functions.   
 
Verification 
The IEEE handbook on software engineering terminology defines verification as “formal proof of 
program correctness,”63 where ‘formal proof of program correctness’ means “a formal technique 
used to prove mathematically that a computer program satisfies its specified requirements.”64  As the 
U.S. Federal Drug Administration guidance for software developers puts it (in conformance with 
ISO 9000), “Software verification looks for consistency, completeness, and correctness of the 

                                                 
63 IEEE Software Engineering Terminology  IEEE-STD 610.12-1990 p.81 
64 Ibid. p.59 
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software.”65  The U.S. Department of Defense, an historic developer and user of physical models 
(and an agency with a recent interest in computational social models), defines verification as “the 
process of determining that a model or simulation implementation accurately represents the 
developer's conceptual description and specifications.”66  Verification thus is a determination of 
internal consistency– that if the programming specifications required that the code does certain 
things, it did.  Various tools have been developed to determine the ‘goodness of fit’ of the code 
performance to specifications, usually through statistical measures.  Verification is not designed to 
challenge the specifications: those are taken as given. 
 
Validation 
Validation is much fuzzier in nature than verification.  Many definitions speak of assessing whether 
the computer program is “an accurate representation of the system under study,”67 whether the 
simulation is a “good model of the target,” 68  or a legitimate “representation of the actual…system 
under design or study.” 69  According to these definitions, validation thus requires assessing the 
goodness of fit of the code to something external to the modeling process – the target domain.    If 
we are interested in a ‘fit’ or isomorphism between a computational representation or model and a 
target domain, we can infer from common practice that we are interested in using the computational 
model to predict, to tell us what the future will look like.  Hence this type of validation is more 
specifically referred to as predictive validation.   
 
Predictive validation 
Computational models in the physical sciences have historically been tested for their predictive 
capability.  Prediction in a modeling regime can be defined as the “use of a computational model to 
foretell the state of a…system under conditions for which the computational model has not been 
validated.”70  This requires some means to compare the model to that target domain.  In the physical 
sciences, engineering and, to some lesser degree, the life sciences, this is usually accomplished 
through experimentation.  
 
William Oberkampf et al argue that validation is the process of determining the degree to which 
computational simulation results agree with experimental data.71   (Oberkampf et al’s thorough 

                                                 
65 U.S. Department Of Health and Human Services.  Food and Drug Administration. Center for Devices and 
Radiological Health.  Center for Biologics Evaluation and Research General Principles of Software Validation; Final 
Guidance for Industry and FDA Staff.  Document issued on: January 11, 2002.  P.5  
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pd
f    
66 U.S. Department of Defense. Dictionary of Military Terms.  http://www.dtic.mil/doctrine/dod_dictionary/  
67 Jack P.C. Kleijnen.  1995.  Verification and validation of simulation models. European Journal of Operational 
Research.  Vol.82.  Pp.145‐162 
68 Nigel Gilbert et al.  1999. Simulation for the Social Scientist. 1st edition. Philadelphia, PA: Open University Press. 
69 E. J. Williams. 1998.  
 Verification and validation in industrial simulation. Proceedings of the Summer Computer Simulation Conference.  
Pp. 57‐62.  
70 American Institute of Aeronautics and Astronautics. 1998.  Guide for the Verification and Validation of 
Computational Fluid Dynamics Simulations.  AIAA-G-077-1998, Reston, VA 
71 William L. Oberkampf, Timothy G. Trucano, and Charles Hirsch.  2003.  Verification, Validation, and Predictive 
Capability in Computational Engineering and Physics.  Sandia Report.  SAND 2003-3769.  February 2003.  U. S. 
Department of Energy, Sandia National Laboratories.  Albuquerque, NM  p.17 
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treatment of validation covers in depth many issues on which I will only touch in this discussion, 
although their discussion specifically targets the physical sciences.)  In this paradigm, experimental 
data are used as a surrogate for the ‘real world,’ or as Oberkampf et al put it, “experimental 
data…[are] our best indication of reality.”72  Oberkampf et al’s statement that validation is about 
determining the degree of fit between the results of a simulation and the results of experiments 
raises the question of the degree of accuracy of that fit.  Just how accurately does a model need to 
conform to the experimental results for the model to be ‘valid’? 
 
As Oberkampf and Matthew Barone note, “If the computational results “generally agree” with the 
experimental data, the computational model is commonly declared “validated.”73  Naomi Oreskes 
and Kenneth Belitz, speaking from the perspective of the earth sciences, remind us that “The 
literature of model validation is filled with terms like ‘adequate’, acceptable’, ‘satisfactory,’ and 
reasonable’, even in sophisticated mathematical treatments.  These are obviously subjective 
terms…”74  Leonard Konikow and John Bredehoeft point out that that “because the definition of 
‘good’ [as in a ‘good comparison’ between experimental and simulation results] is subjective, under 
the common operational definitions of validation, one competent and reasonable scientist may 
declare a model as validated while another may use the same data to demonstrate that the model is 
invalid.”75   
 
While there are nascent efforts at the development of what are being called ‘validation metrics 
(primarily in the physical sciences and engineering),76 we will always be left with a process that yields 
high levels of uncertainty.  As Karl Popper famously pointed out, “a positive decision can only 
temporarily support the theory, for subsequent negative decisions may always overthrow it.”77  So 
while the number of tests that exhibit some high degree of isomorphism between the model and the 
‘real world’ or target system can increase, there is no way to determine with absolute certainty that 
the next test will also exhibit a corresponding degree of isomorphism.  Continuing to test does 
provide other benefits, however.  Thomas Naylor et al  point out that “[i]f in a series of empirical 
tests of a model no negative results are found but the number of positive instances increases then 
our confidence in the model will grow step by step.”78  Therefore, we can increase our confidence in the 
likelihood that the model’s output will conform to experiment results.  But that is all.  
 
Predictive validation and computational social models 

                                                 
72 Ibid., p.13 
73 William. L. Oberkampf and Matthew F. Barone.  2005.  Measures of Agreement Between Computation and 
Experiment: Validation Measures.  Sandia Report.  SAND 2005-4302.  August 2005.  U. S. Department of Energy, 
Sandia National Laboratories.  Albuquerque, NM  P.1  
74 Naomi Oreskes and Kenneth Belitz.  2001.  Philosophical Issues in Model Assessment.  In Model Validation: 
Perspectives in Hydrological Science.  M.G.Anderson and P.D.Bates (eds.)  John Wiley & Sons, Ltd.  New York, NY.  
Pp.23-41.  P.24 
75 Leonard F. Konikow and John D. Bredehoeft.  1992.  Ground-water models cannot be validated.  Advances in Water 
Resources. Vol.15, No.1. Validation of Geo-hydrological Models Part 1.  Pp.75-83.  P.78 
76See, for example, Leonard E. Schwer.  2007.  Validation metrics for response histories: perspectives and case studies.   
Engineering with Computers.  Vol.23, No.1.  Pp.295-309. 
77 Karl Popper.  2002 (1959) The Logic of Scientific Discovery.  Routledge. P.10 
78Thomas H. Naylor, J. M. Finger, James L. McKenney, William E. Schrank and Charles C. Holt.  1967.  Verification of 
Computer Simulation Models.  .  Vol. 14, No. 2, Application Series.  Pp. B92-B106  Management Science
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There are certain methodological issues related to predictive validation which makes it a very 
questionable process to apply to computational social models.  These issues relate to the ethics of 
experimentation on human populations, the complex nature of the target domain, the nature of the 
data, and the time frames in question.  I will treat each very briefly in turn. 

Ethical limitations 
The ethical limitations placed upon experimentation on human populations do not need much 
explication.  The experiments in Tuskegee, TN in the 1950’s where a ‘control population’ of 
African-American men was denied treatment for syphilis over a 40-year period although medication 
was available to the general population is a well-known example of an unethical experiment.79 The 
‘Milgram experiment’ in which subjects were willing to provide what they thought were fatal 
electrical shocks to subjects when so ordered by an authority figure80 is another well-known 
example.   
 
Obviously, however, we do experiment on human populations.  These experiments are now 
conducted in accordance with one of several codes governing the conduct of experimentation on 
human populations.  The two best known codes are the Nuremberg Code, promulgated in 1949 as a 
response to the actions of the Nazis on subjected populations during World War II, and the 
Belmont Report, issued in 1976 by the U.S. Department of Health, Education and Welfare and 
often referred to as the standard governing research funded by federal dollars.81  Institutions 
managing research funds have established review boards that ensure that the research design and the 
conduct of research conform to these broad ethical guidelines. 

The constraints imposed by complexity 
Socio-cultural (human) systems are complex adaptive systems. These types of systems are composed 
of agents that are constantly learning and adapting to their environment.  In the course of this 
evolution, not only do the agents change but the structure of the system (the organization of the 
agents) also changes.  One important consequence of this is that the system as an aggregate will 
exhibit behavior that is the outcome of many decisions made at the local level, a phenomenon that 
has come to be known as ‘emergence.’  As John Holland put it, “[b]ecause the individual parts of a 
complex adaptive system are continually revising their ("conditioned") rules for interaction, each 
part is embedded in perpetually novel surroundings (the changing behavior of the other parts).82 
This also contributes to the nonlinearity that Sallach (this volume) describes as an important aspect 
of the complexity of social systems. 
 
The complex systems nature of human systems has two consequences for the development of 
computational models.  First, if a part of the system is isolated for experimental purposes for a 
validation exercise, the integrity of the system as a whole has been compromised.  The parts cannot be 
understood outside of the context of the system as a whole.  Sallach (this volume) treats this in terms of what 
he calls endogeneity, noting that “whether an attribute is exogenous or endogenous is usually 
regarded as a characteristic of the model rather than the social process that is being represented.”  
Secondly, emergence – “a phenomenon whereby well-formulated aggregate behavior arises from 

                                                 
79 http://www.cdc.gov/tuskegee/timeline.htm  
80 Stanley Milgram.  1974.  Obedience to Authority; An Experimental View.  Harpercollins.  New York, NY 
81 Both codes can be found at http://ohsr.od.nih.gov/guidelines/index.html  
82 See John. H. Holland.  1992.  Complex Adaptive Systems. Daedalus, Vol. 121, No. 1.  Pp. 17-30.  P.20 

 244 

http://www.cdc.gov/tuskegee/timeline.htm
http://ohsr.od.nih.gov/guidelines/index.html


 

localized, individual behavior”83 – means that producing a model that reproduces the behavior of 
the target system does not mean that the model accurately represents the structure or underlying 
processes of that system.  It thus is no assurance that the model is predictive, i.e. that it will 
reproduce the target system’s behavior under different conditions.84  As Holland says, “History and 
context play a critical role... It is the process of becoming, rather than the never-reached end points, 
that we must study if we are to gain insight.”85 

Data issues 
Aaron Perls and I have presented an extensive argument elsewhere about some of the problems 
with sociocultural data related to computational modeling.86  Because all entities and relationships 
must be able to be treated computationally, they must be observable and quantifiable.  Not all 
human phenomena fit this description.  Belief, for example, is a very strong sociocultural factor and 
yet cannot be either seen or counted.  These phenomena are usually treated in the computational 
domain through surrogates – behavior substituting for belief or motivation, for example.  This 
substitution is often not (or poorly) documented, and its impact on model utility rarely recognized.   
 
There are additional issues with sociocultural data, many revolving around uncertainty.  There is 
epistemological uncertainty (have we collected the right data), as well as uncertainty related to 
collection and measurement (have we collected the data right) and its conversion to computationally 
manipulable forms.  There is a huge literature related to uncertainty which I will not even begin to 
treat here.  However, the recognition of its role in computational social modeling has heretofore 
been rather underplayed.  Suffice it to say that a National Research Council report on dynamic social 
network analysis identified uncertainty as one of the key under-researched areas in quantitative and 
computational social science87 
 
As a final note in this section, we refer to Robert Albro’s work in this volume in which he challenges 
the very notion of ‘data’ itself.  He argues that the operational and use requirements the military 
places upon the modeling of sociocultural phenomena generate, in effect, a new type of sociocultural 
data.  Although the term may be the same as that used by anthropologists in their ethnographic 
work, the ‘data’ upon which concepts such as ‘human terrain’ are based are epistemologically 
different.  As Albro puts it, “The relevance of cultural data for the user community [in this context] 
appears to be more important than its significance for ostensible cultural subjects themselves.”  He 
thus problematizes the very notion of data itself.88 

                                                 
83 John H. Miller and Scott E. Page.  2007. Complex Adaptive Systems: An introduction to computational models of 
social life.  Princeton University Press.  Princeton, NJ.  P.46 
84 Oreskes and Belitz, op.cit. P.32 
85 Holland, op.cit. 
86 Jessica Glicken Turnley and Aaron S. Perls.  2008.  What is a computational social model anyway?:  A Discussion of 
Definitions, a Consideration of Challenges, and an Explication of Process.  U.S. Department of Defense.   Defense 
Threat Reduction Agency, Advanced Systems and Concepts Office.  Report No. ASCO 2008-013. 
http://www.au.af.mil/au/awc/awcgate/dtra/what_is_social_model.pdf    
87 R. Breiger, K. Carley, and P. Pattison. 2003. Dynamic Social Network Modeling and Analysis: Workshop Summary 
and Papers. Washington, DC: National Academies Press. 
88 I would go a bit further and suggest that there may not be a correct definition of data here, but rather an appropriate one.  
The challenge is to ensure that all participants in the process are using the same definition.   
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Dealing with time 
There are several ways in which time makes validation of computational social models difficult.  
Perhaps most important is that of scale. Sallach (this volume) speaks of the “unity of time horizon” 
that is absent in the nonlinear systems of which social systems are an example.   Changes in human 
systems often take place over generations.  Large-scale changes may not be evident for centuries.  
Therefore, in order to see if a model is ‘predictive,’ i.e. if its output is isomorphic with what ‘really 
happens,’ we would need to live long lives ourselves. 
 
Ecosystem and climate change models face the same challenge.  The inability to assess the predictive 
validity of climate change models, for example, is one of the many issues that have led to the long 
debate on the credibility of the threat.  Edward Rastetter proposes an approach (not a solution) to 
this problem.  “Confidence in these models has to be built through the accumulation of fairly weak 
corroborating evidence rather than through a few crucial and unambiguous tests. The criteria 
employed to judge the value of these models are thus likely to differ greatly from those used to judge 
finer scale models, which are more amenable to the scientific tradition of hypothesis formulation 
and testing.” 89   
 
Another time-related problem that ecosystem models and models of socio-cultural systems have in 
common is that of multiple timeframes impacting the same problem.90  In the ecosystem arena, for 
example, any given ecosystem is experiencing phenomena that change according to geologic and 
climactic time scales (eons, with occasional rapid convulsions), ecological scales (decades), weather-
related (as distinct from climatic) scales (daily), and so on.  The same is true for human communities.  
Some phenomena change quickly (fashion, certain types of behaviors, and the like).  Others take 
generations to change, while still others may change even more slowly.  Accounting for the 
interaction of these different rhythms is a significant challenge for a computational social model. 
 
Other types of validation 
These issues suggest that computational social models may, in fact, be something other than 
computational physics models using a different set of data.  Thinking of them as redirected physics 
models may force us to ask of them that which they cannot produce.  So, if not validation as we 
think of it for computational models of physical or biological phenomena….then what?   
 
The question should actually be, ‘if not predictive validation…then what?  We may not be ready to 
completely dispense with validation as predictive validation is only one type of validation exercise 
that could be performed on a computational model.  There are others. 
 
Paul Davis, in his discussion of simulations for military uses, identifies three different types of 
validity:  predictive validity, descriptive validity, and structural validity.  He recognizes but does not 
privilege predictive validity, which he defines as existing when “a model…can predict desired 
features of system behavior, at least for particular domains of the initial conditions and durations of 

                                                 
89 Edward B. Rastetter.  1996.  Validating Models of Ecosystem Response to Global Change: How can we best assess 
models o f long-term global change?.  BioScience Vol. 46 No. 3. Pp.190-198. P.190 
90 Simon A. Levin. 1992.  The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture 
Ecology, Vol. 73, No. 6. Pp. 1943-1967. 
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time, to within some known level of accuracy and precision.”91  Note that his notion of predictive 
validity is highly constrained.  Any given model may have such validity but only under certain 
specified constraints. 
 
Davis also introduces a concept of descriptive validity.  This is present when “the model is able to 
explain phenomena or organize information meaningfully in one way or another”92  (emphasis in the 
original).  And finally, he also talks about structural validity, which “means that the model has the 
appropriate entities (objects), attributes (variables) and processes so that it corresponds in that sense 
to the real world (verisimilitude).”93   
 
Lance Champagne, in his exploration of verification and validation for certain combat simulations, 
introduces another set of validity techniques.  He speaks of empirical validity, face validity, and 
theoretical validity.  Empirical validity is what I have called predictive validity:  “the aim of empirical 
validity techniques is to provide an indication as to the accuracy of the model with respect to the 
observed behavior of the system under study.”94  Face validity is established when the model 
“appears reasonable” to those with subject-matter knowledge.95  (Face validity has been called ‘social 
validity’ in the literature on participatory or companion modeling.96  I will discuss this literature in 
more depth later.)  And theoretical validity is used to “establish the extent to which a model 
conforms to scientific theory.”97 
 
I would take issue with his last point.  In our extensive treatment of the nature of models 
elsewhere,98 we argued that this process – the comparison of the computational model to theory – is 
actually a form of verification.  We have treated elsewhere what it means to ‘re-present’ a target 
system through a computational model.99  A model is not the whole system, for then it would not be 
the model – it would be the system.  Briefly, we argued that a model is an analogy of the target 
system.  The modeling team identifies what it considers to be salient elements and relationships in 
the target environment and re-produces them computationally.   Clearly, it is the definition of 
salience that is in question here, for it is this definition that forms the logic of choice.  (Possibly our 
‘salience’ is what Davis meant by ‘appropriate’ in his definition of structural validity, where the 
model has the “appropriate entities (objects), attributes (variables) and processes”100).  We argued 
that such salience is determined by the questioner (a particular social role in the model building 
                                                 
91 Paul K. Davis.  1992.  Generalizing Concepts and Methods of Verification, Validation, and Accreditation (VV&A) for 
Military Simulations.  Prepared for the Under Secretary of Defense for Acquisition.  RAND R-4249-ACQ.  RAND 
Corporation.  Santa Monica, CA. P.8 
92 Ibid. P.7 
93 Ibid. 
94 Lance E. Champagne, MAJ, USAF.  2003.  Development Approaches Coupled with Verification and Validation 
Methodologies for Agent-Based Mission-Level Analytical Combat Simulations.  Dissertation.  Graduate School of 
Engineering and Management.  Air Force Institute of Technology.  Air University.  United States Air Force.  P.60 
95 Ibid., P.58   
96 Castella, Jean-Christophe, Tran Ngoc Trung, and Stanislas Boissau.  2005.  Participatory Simulation of Land-Use 
Changes in the Northern Mountains of Vietnam: the Combined Use of an Agent-Based Model, a Role-Playing Game, 
and a Geographic Information System. Ecology and Society Vol.10. No.1 Pp 27ff. 
97 Champagne, op.cit. P.62 
98 Turnley and Perls, op.cit. 
99 Ibid.    
100 Davis, op.cit. p.7 
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process), usually in conjunction with the model user (another role), and is expressed in the model 
through the theory that underpins it.  It is particularly important to make visible the use of theory as 
the logic of selection in the computational social science world, for each set of phenomena in the 
target domain (the ‘real world’ of human interaction) has a myriad of explanatory theories.   
 
Each theory drives the modeling team to select a different set of objects and relationships as 
relevant.  Once those are identified, the programmer writes code to instantiate them in the 
computational environment.  Comparing the code to the theory, in this case, is actually determining 
if the code does what the programmer intended it to do – verifying the code, in other words, not 
validating it.  Validation is performed on the conceptual model or theoretical construct.  Is an 
economic explanation the ‘correct’ or appropriate one?  Or is the phenomenon better explained by 
structural theory?  Or perhaps the issue is one of affective engagement – invoking yet another 
disciplinary body of knowledge and making salient (or appropriate) yet another set of objects and 
associated relationships?  (I note here for the record that there are some interesting ways in which 
the interplay between the code and theory can extend the theory.  The code actually is more than the 
theory expressed in a different language.  However, a full discussion of this would take us off topic – 
and at the level of resolution of this paper, my earlier statements still stand.) 
 
At best, we might say that narrative social theory developed through observation and/or limited 
experimentation is validated for its predictive capability through case studies, ethnographies and the 
like.  Computational models structured and shaped by narrative theory use the validity of that 
underlying theory as a proxy for their own.  
 
So we now have the following: 

 A validation method that tests the ‘fit’ between the model and the target domain (the ‘real 
world’) – predictive validation. 

 A validation method that assess whether the model organizes information about a 
phenomenon in a meaningful way, allow us to learn something new about that phenomenon 
– descriptive validation. 

 A validation method that checks how well the computational model represents a theory – 
structural or theoretical validation, a method I claim is actually verification not validation. 

 A validation method that checks whether or not the model ‘looks reasonable’ to people who 
know something about the target domain – face or social validation. 

 
There may be other types of validation as well.  My point is that predictive validation is an important 
method for assessing the goodness of a model if, and only if, the purpose of the model is to predict.  
As Davis pointed out, “…evaluation of models should vary with type.  It is silly to denigrate a good 
descriptive model that is structurally valid, merely because it is not a prediction machine…This is 
nontrivial, because many critics of military modeling are guilty of precisely this error.”101  And, as we 
saw earlier, there may be certain aspects of the socio-cultural domain that make it very difficult if not 
impossible to create a computational social model with a high level of predictive capability.   
 
Models and their Uses 
Just because computational social models cannot predict does not mean they are useless.  This, then, 
begs the question of the purpose or utility of such models.  Laura McNamara argues that “the main 
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benefit of V&V is not (perhaps counter-intuitively) increased focus on the model but the contextual 
issue of how the model will be used and, therefore, how the organization and its members identify 
what decisions they are responsible for making and how they negotiate acceptable levels of risk. This 
is because verification and validation emphasize whether or not a software application is credible for 
an intended area of use” (emphasis in original).102  
 
Not surprisingly, we find that organizations which utilize software in furtherance of their missions 
add a dimension of ‘usefulness’ to their definitions of validation.  The U.S. Food and Drug 
Administration, when speaking of requirements for software used in medical applications, defines 
validation as the “confirmation by examination and provision of objective evidence that software 
specifications conform to user needs and intended uses, and that the particular requirements 
implemented through software can be consistently fulfilled.”103  The U.S. Department of Defense 
defines validation as “the process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model.”104   
 
Models answer some question or, to put it another way, fill some need.  That question may be 
theoretical (do the posited cause and effect relationships hold under certain specified conditions, 
often phrased as an if-then question?), it may be descriptive (what does a certain phenomenon look 
like?) or it may be applied, designed to contribution to the solution of some ‘real world’ problem, as 
in the case of military, corporate and policy models.  Hodges, in his rather tongue-in-cheek 
description of uses for a ‘bad model’ (i.e. one that does not predict well), identified uses ranging 
from a rather mundane (but nonetheless important) bookkeeping function, to a more substantive 
use such as an aid to thinking and a stimulus to intellectual exploration.105   
 
Assessing the Utility of a Model 
So how do we track the ‘utility’ or measure the usefulness of a computational model?  We certainly 
could look at the number of times it is used (as with a webpage counter) and by whom.   More 
meaningfully, we could assess the contribution the model makes to its stated use domain.  In order 
to do this, we need to a) clearly understand how the modeling team characterized the use domain 
(i.e. the model’s stated purpose or intended use), and b) understand how a tool such as a model can 
achieve that purpose or be used in its intended manner. 
 
One way to think of the use of computational models is to focus on model output, the product of a 
model run.  This output could be used in two ways.  It could be seen as the answer to the question, 
the solution to a problem, i.e. the end state of the knowledge-seeking process.  It also could serve as 
input to a decision made by a human.  I will briefly treat the former case, but spend more time on 
the latter as I will argue that it is as input to human decisions that computational social models can 
make their most valuable contributions. 
 

                                                 
102 Laura McNamara.  2010.  Why Models Don’t Forecast.   Draft paper prepared for the workshop Unifying Social 
Frameworks.  National Research Council, Washington, DC.  August 16-17, 2010.  
http://www7.nationalacademies.org/bbcss/Why%20Models%20Dont%20Forecast-McNamara.pdf   P.10 
103 U.S. Department of Health and Human Services, op.cit. P.5 
104 U.S. Department of Defense. Dictionary of Military Terms. 
105 James S.Hodges.  1991.  Six (or so) things you can do with a bad model.  Operations Research.  Vol.39. No.3.  
Pp.355-365.  Pp. 355 - 6 
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Computational problem-solving systems are often termed ‘expert systems.’ There is a voluminous 
literature on expert systems which I will not treat here, other than to point out that expert systems 
only work well in highly constrained environments.   “Expert systems are typically autonomous 
problem-solving systems used in situations where there is a well-defined problem and expertise 
needs to be applied to find the appropriate solution”106  These environments are generally those in 
which there is a possible answer, a ‘right’ answer.  Furthermore, while an expert system 
(computational or otherwise) can describe the steps necessary to get to a solution, it generally 
provides little explanation of the solution logic to the user.107 
 
In complex systems such as socio-cultural systems, problems are rarely well-defined nor do they deal 
with highly constrained environments.  In part this is because we are still ignorant of many of the 
variables that affect a given problem space.  It also is because often simply the act of framing the 
question affects the target situation.  Think, for example, of an exercise to evaluate a site for 
potential Superfund status.  Part of the evaluation is a socio-cultural assessment of the affected 
community.  However, simply the announcement that the evaluation will take place (as distinguished 
from actually performing the evaluation) could affect property values, cause some families to move 
out of the neighborhood, affect the availability of commercial capital, and the like.  In this type of 
situation, the full set of parameters defining the problem may be unknown, and for those that are 
known, their value may be constantly changing.  These types of problems have recently been 
discussed in some circles as ‘wicked problems.’108  From a more useful analytic perspective, they also 
may be treated as a function of the complex nature of the system.  As Holland pointed out, “the 
aggregate behavior of the system is usually far from optimal, if indeed optimality can even be 
defined for the system as a whole. For this reason, standard theories in physics, economics, and 
elsewhere, are of little help because they concentrate on optimal end-points, whereas complex 
adaptive systems "never get there." They continue to evolve, and they steadily exhibit new forms of 
emergent behavior.”109  
 
So suppose we move away from the conception of a computational model as ‘making a decision’ or 
providing an answer, to one in which the model acts in a decision support role.  Computational 
models operating in a decision support role can be characterized as advisors.  “Advisory systems do 
not make decisions but rather help guide the decision maker in the decision-making process, while 
leaving the final decision-making authority up to the human user.”110  As McNamara pointed out, 
“models don’t forecast because people forecast” (emphasis in original).111  
 
This type of system, in which a human makes a decision using a process which incorporates input 
from many different sources, is often called a ‘judge-advisor’ system.  “….most important decisions 
are made in a social context in which the person responsible for the decision, the Judge, seeks or 
receives some from (sic) of input from one or more persons in the role of Advisor…the premise is 
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that the multiple persons involved in making a decision do so in very different roles.”112  In this 
framing, while the ultimate decision is made by a single individual (the ‘judge’), that decision is 
partially a function of the advice received.  The advisors thus are present in that final decision and 
must be considered in order to understand how the final decision is made. 
 
I am positing that a computational social model most effectively serves in an advisory capacity, 
providing two types of input to a judge’s decision.  One type involves the provision of clarity or 
information about the structure or logic of the complex system about which the decision is to be 
made.  The other type is the provision of possible futures for consideration.   
 
One strong area of value of computational models over narrative or qualitative models is that all 
entities and relationships in a computational model must be made explicit, all parameters stated 
clearly, and all dynamics unambiguously described for the code to be written.  This forces rigor upon 
the narrative world of social theory (although I emphasize that the multivocality and indeterminacy 
of narrative does have an important role to play for certain purposes).  It also contributes to 
understanding by making visible what may have been unseen, allowing (forcing) us to engage with it.  
As Robinson Crusoe tells us upon seeing the footprint of an unknown person on the sands of his 
desert island, “Not that I did not believe that savages had frequented the island even all the 
while…but I had never known it, and was incapable of any apprehensions about it; my satisfaction 
was perfect, although my danger was the same, and I was as happy in not knowing my danger as if I 
had never really been exposed to it.”113  Recall Davis’ explanation of descriptive validity: “the model 
is able to explain phenomena or organize information meaningfully in one way or another.”114    
 
Different types of computational social models fill this explanatory role differently.  Systems 
dynamics models, for example, help us “understand …how all the objects in a system interact with 
one another”115 These types of models are directly focused on providing a better understanding of 
overall system behavior by identifying objects and the dynamics of their relationships.  The focus is 
on the dynamics of the system.  Social networks also aim to show us how structure can influence 
group behavior by allowing us to add or remove nodes (actors) or links (connections) and providing 
snapshots of the resulting different structural arrangements.  The focus here is on the relationships 
or connections between nodes.  Agent-based models illustrate how small perturbations in a system 
at a very low level can have large, system-wide effects.  In this modeling approach, the focus is on 
describing the actors (including the attributes which allow for differentiation among them) and the 
dynamics (‘rules’) of their interactions. 
 
All three modeling approaches require the identification of entities (objects, actors) in the system 
and connections among them.  In the case of systems dynamics and agent-based models, they also 
must describe dynamics or process, the ways the entities interact over time.  In the case of social 
networks, there are no dynamics incorporated into the model itself but the use of repeated 
‘snapshots’ of different configurations can provide information on how the structure can change 
over time (although not why it changed).  In all three approaches, the process of identifying and 
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describing these entities, the relationships among them, and the processes that can affect system 
functioning can themselves be a learning process.   
 
Participatory modeling (also known as companion modeling) is a mechanism in which stakeholders 
(who are often also decision-makers) engage in a role-playing game or some other mechanism 
through which modelers elicit their tacit knowledge about the rules for interaction in a pre-defined 
situation.  These rules are then encoded in an agent-based model which is re-presented to the players 
(stakeholders, decision makers) for face or social validation.116  Facilitators of this type of 
participatory process claim that it is highly educational for the participants, providing them with 
knowledge and insight into other players’ agendas that they otherwise would not have.117  This 
benefit was particularly emphasized by those who took on roles other than their own during the 
course of the game.118  The game also produces knowledge about how players move through a 
particular complex system.119  As Thomas Karas pointed out in his discussion of a workshop 
focusing on the relationships between modelers and policymakers, “[p]articipatory modeling can 
benefit those involved in building the model even when the completed model is not used as a 
communications framework. The very act of constructing a model requires learning, in a structured 
way, how the modeled system works. Thus the mental model that the participant leaves with may be 
more sophisticated and more reflective of the best knowledge on the subject—the analyst or 
policymaker becomes a more proficient expert himself.”120  In this way, “modeling has the potential 
to enhance the [policy] process by…deepening policymakers’ comprehension of the underlying 
problems and issues, clarifying decision-makers’ assumptions and values helping to build 
understandable  narratives (“stories”) in support of policy proposals, informing dialogue among 
stakeholders and policymakers, or providing a framework for negotiation and consensus building.121   
The model allows us to ‘see’ what has been hidden, to see Robinson Crusoe’s ‘savages’ as revealed 
by their footprints on the sand. 
 
Clearly in this case of assessment of model goodness, an assessment of the goodness of the 
computational model, would involve not a direct evaluation of the model, but an assessment of its 
impact on the model user.  For example, pre- and post-test instruments could be administered to 
gauge the knowledge or understanding delta exhibited by the user as a result of his engagement with 
the model.122  A ‘good’ model will generate a large delta. 
 
Computational social models can be used to generate alternate scenarios or possible futures for 
decision makers which can also serve as a learning mechanism.  With a computational model, the 
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decision maker can alter input variables and assess the corresponding difference in outcome, with 
the computer able to accommodate the permutation of these differences through more variables and 
relationships than the mind can handle.  In this case, the decision maker is interested in model 
output – but not in model output as ‘fact’ or as a future that will happen, but in model output as 
possibility, as possible manifestations of the interaction of underlying structures and their dynamics.  
The interest should be not in the actual future but in the possibility space illustrated by the outputs 
of multiple runs which themselves are the function of changes in input variables.   
 
As an interesting parallel, we might note the way in which Aristotle differentiated between history 
and poetry [art/literature]: “The real difference is this, that one [history] tells what happened and the 
other [poetry] what might happen. For this reason poetry is something more scientific and serious 
than history, because poetry tends to give general truths while history gives particular facts.123  Mark 
William Roche, writing on the importance of literature in the 21st century, argued that literature 
works with something akin to Max Weber’s ideal type.124  As Roche says, “Goethe’s Faust captures 
more of what life means than may a ‘real’ scholar or lover.  In a sense he [Faust] is the original; we 
may appear to be like or unlike him, not he like or unlike us.”125  Literature thus may be true, 
although not accurate. 
 
The presentation of a multitude of possible scenarios to a decision maker (the demarcation of a 
possibility space) begs the question of what the decision maker does with that possibility space.  
Answering this question would take us back to a consideration of what types of scenarios are most 
useful, and how they can be best communicated to the decision maker.  This would take us into the 
literature on decision-making and scenario planning, a step too far for this discussion.   For our 
purposes here, it is sufficient to note that this alternative approach to the assessment of goodness of 
the model once again moves away from the model’s fit to the ‘real world,’ with the exception 
perhaps, an assessment of face or social validity to ensure that the computational model passes a 
‘laugh test.’  As McNamara points out, “These discussions [of V&V] force clarification about the 
decisions, tradeoffs, and risks across stakeholder communities, and what is required for a model to 
be considered credible and appropriate in relation to a decision.”126  We might recall our parallel 
from literature here.   
 
We still read and learn from Shakespeare (and Goethe, for that matter), although his world is no 
longer with us.  We learn from Crusoe’s encounter with footsteps in the sand, though we probably 
will never be stranded on a desert island.  We abstract from the literature the archetypical elements 
of people and social interactions, and watch how those play out in a range of social settings.  We 
then apply those lessons to our own lives, making (we hope) better informed social engagements. 
 
Conclusion 
Our argument is based on the claim that computational social models are inherently unable to be 
used for predictive purposes in the same way that models of physical and many biological 
phenomena can.  Ethical issues, the complex nature of the socio-cultural domain, the nature of the 
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data, and the inherent time scales of the phenomena under consideration severely constrain the 
types, breadth and depth of experiments we can conduct to ascertain predictive capability.  At best, 
computational social models can rely upon the (proxy) validity of the narrative theory upon which 
they are based. 
 
That said, there are other means of ascertaining goodness.  All computational models are built with a 
use in mind.  If we broaden our thinking and consider ways other than prediction to use 
computational social models, we will begin to realize alternative means of assessing their goodness.  
The question of degree of isomorphism to the ‘real world’ (or target domain) may become moot.  
Just as we continue to read Goethe although we never expect to actually meet Faust, so might we 
build and use computational social models although we never expect to actually live in the future any 
one of them ‘predicts.’  Although not accurate, computational social models can still be useful – and, 
even better, true. 
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